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1.

Overview



General Recommendation

For each user u, we would like to estimate the rating 7, ; for any new item i

> Explicit Feedback Matrix R € RV*M

« Nusers, M items
Twi =11, ..., 5} ifuser u has interacted with item i, O otherwise

Rating ry, ;

> Recommend new items that the user would rate highly




Recommendation with Reviews

Yririrvrs Solid MI
By Zimmer on September 2, 2018

Format: Blu-ray

No doubt one of if not the best movie released this year and, just my IMO, in the top 3 Mission films. However
im not sure it is quite deserving of the high RT rating it received. It does drag a bit in the second act when
Solomon Lane is introduced again. The film needed a truly great scene stealing villain IMO to compete with
the great action and Cruise's stunts, and Lane just isnt that interesting. Much has been said of Cavill and his
amazing moustache and he's decent but a bit wooden. Great physical presence though. Cruise is solid as usual.
Really really enjoyed the first act and the action scenes toward the end were great. The score by Lorne Balfe
might just be the best Ml score yet. Should have cut the running time a bit tho

> Assumption: Each user-item interaction contains a textual review

 Readily available in many e-commerce and review websites
(E.g. Yelp, Amazon, etc)

> A complete user-item interaction: (u, L, Ty du,i)

Rating Review




“Problems” with Reviews

Yririrvrs Solid MI
By Zimmer on September 2, 2018

Format: Blu-ray

No doubt one of if not the best movie released this year and, just my IMO, in the top 3 Mission films. However
im not sure it is quite deserving of the high RT rating it received. It does drag a bit in the second act when
Solomon Lane is introduced again. The film needed a truly great scene stealing villain IMO to compete with
the great action and Cruise's stunts, and Lane just isnt that interesting. Much has been said of Cavill and his
amazing moustache and he's decent but a bit wooden. Great physical presence though. Cruise is solid as usual.
Really really enjoyed the first act and the action scenes toward the end were great. The score by Lorne Balfe
might just be the best Ml score yet. Should have cut the running time a bit tho

1. Not all parts of the review are equally important!

« E.g.“Therestaurantislocated beside a old-looking post office’
may not be correlated with the overall user satisfaction

2. Eachreview may cover multiple “aspects”

 Review Length: Around 100 to 150 words in general
 Users may describe about various item properties



What is an Aspect?

> A high-level semantic concept
> Encompasses a specific facet of item properties for a given domain
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Existing Work & Our Model

Deep Learning-based Recommender Systems

v' Capitalizes on the strong representation learning capabilities
of neural networks

x  Less interpretable and informative

Aspect-based Recommender Systems

v More interpretable & explainable recommendations

x  May rely on existing Sentiment Analysis (SA) tools for the
extraction of aspects and/or sentiments

x  Not self-contained
x  Performance can be limited by the quality of these SA tools

Our Model: Combines the strengths of these two
categories of recommender systems




2.
Proposed Model



Our Proposed Model - ANR
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Key Components

> Aspect-based Representation

Learning to derive the aspect-
level user and item latent
representations

Interaction-specific Aspect
Importance Estimation for both
the user and item

User-Item Rating Prediction by
effectively combining the
aspect-level representations
and importance



Input & Embedding Layer

[ Embedding Layer ]
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lacus mi morbi dictum nisl lacus mi morbi dictum nisl

aliguam leo. Vitae donec integer aliquam leo. Vitae donec integer
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diam ultrices erat platea odio, diam ultrices erat platea odio,

mauris  blandit felis dui id mauris  blandit felis dui id
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Input

> Similar to existing deep learning-based methods
> User document D,, consists of the set of review(s) written by user u
> Item document D; consists of the set of review(s) written for item i



d: Dimensionality of word embeddings
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Embedding Layer

> Look-up operation in a embedding matrix (shared between users & items)
> Order and context of words within each document is preserved



Aspect-based Representations

Lorem ipsum dolor sit amet,
lacus mi morbi dictum nisl
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Aspect-based Representations

Aspect-based Representation Learning
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Aspect-speCIflc Eget erat nec, tortor dictumst at eu vivamus,
» . . » quam diam ulrices erat platea odio, mauris »
Projection Layer blandit felis dui id. Adipiscing risus nunc mauris,
habitasse elit.

Subset of document words
relevant to Aspect K

Aspect-specific Projections
> Semantic polarity of a word may vary for different aspects

> “The phone has a high storage capacity” v O
> “The phone has extremely high power consumption” x ®




Aspect-based Representations
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Context-based Neural Attention

> Local Context: Target word & its surrounding words

> Word Importance: Inner product of the word embeddings (within local
context window) and the corresponding aspect embedding




Aspect-based Representations
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Aspect-level Representations

> Weighted sum of document words based on the learned aspect-level
word importance

> Captures the same document from multiple perspectives by
attending to different subsets of document words




Aspect-based Representations
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User & Iltem Aspect Importance

Aspect-level User  Aspect-level Iltem
Representations Representations User Aspect

Importance

D 7

® Item Aspect
Importance

Goal: Estimate the user & item aspect importance for each user-item pair

> Based on 3 key observations
> Extends the idea of Neural Co-Attention (i.e. Pairwise Attention)



Dynamic Aspect-level Importance

1. A user’s aspect-level preferences may change with respect to the
target item

Performance
Portability

Price
Aesthetics

Price
Aesthetics

Performance
Portability

Mobile Phone User Laptop




Dynamic Aspect-level Importance

2. The same item may appeal differently to two different users

| love the
restaurant’s
location!

| am here
for the

NV

/INIT

User A Restaurant User B




Dynamic Aspect-level Importance

3. These aspects are often not evaluated separately/independently

This is a lot more
expensive than what
| would normally buy..

However, the quality
and performance is
better than expected!

User Mobile Phone




Dynamic Aspect-level Importance

Aspect 1 (User)

Aspect 2 (User) \

Aspect K (User)

Affinity Matrix
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User’s Aspect 1 &

Item’s Aspect K

User’s Aspect K &

Item’s Aspect K

> Captures the ‘shared similarity’ between the aspect-level representations

> Used as a feature for deriving the user & item aspect importance




User Aspect Importance:
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[tem Aspect Importance:
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User & Iltem Aspect Importance

Aspect-level User  Aspect-level Iltem
Representations Representations User Aspect

Importance

I Item Aspect

Importance

User & Item Aspect Importance are interaction-specific ©

> User representations are used as the context for estimating item aspect
importance, and vice versa

> Specifically tailored to each user-item pair
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User-ltem Rating Prediction
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User-ltem Rating Prediction
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User- Item Rating Predlctlon
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Model Optimization

The model optimization process can be viewed as a regression problem.

> All model parameters can be learned using the backpropagation
technique

> We use the standard Mean Squared Error (MSE) between the actual
rating r,,; andthe predicted rating 7,,; asthe loss function

> Dropout is applied to each of the aspect-level representations
> L, regularization is used for the user and item biases

> Please refer to our paper for more details!



3.

Experiments & Results



Datasets

We use publicly available datasets from Yelp and Amazon

> Yelp

« Latest version (Round 11) of the Yelp Dataset Challenge
«  Obtained from: https://www.yelp.com/dataset/challenge

> Amazon

 Amazon Product Reviews, which has been organized into 24
individual product categories

 Forthelarger categories, we randomly sub-sampled 5,000,000
user-item interactions for the experiments

* Obtained from: http://jmcauley.ucsd.edu/data/amazon/

> For each of these 25 datasets, we randomly select 80% for training,
10% for validation, and 10% for testing


https://www.yelp.com/dataset/challenge
http://jmcauley.ucsd.edu/data/amazon/

Baselines & Evaluation Metric
1. Deep Cooperative Neural Networks (DeepCoNN), WSDM 2017

« Uses aconvolutional architecture for representation learning, and
performs rating prediction using a Factorization Machine

2. Dual Attention-based Model (D-Attn), RecSys 2017

* |Incorporates local and global attention-based modules prior to the
convolutional layer for representation learning

3. Aspect-aware Latent Factor Model (ALFM), WWW 2018

« Aspects are learned using an Aspect-aware Topic Model (ATM),
and combined with a latent factor model for rating prediction

> Evaluation Metric

«  Mean Squared Error (MSE) between the actual rating r,,; and the
predicted rating 7, ;



Experimental Results

Dataset D-Attn DeepCoNN ALFM ANR Improvement (%)
(a) (b) (c) (d) (d)vs.(a)  (d)vs.(b)  (d)vs.(c)
Amazon Instant Video 1.213 1.178 1.075 1.009 16.83 14.36 6.13
Apps for Android 1.637 1.593 1.555 1.412 13.73 11.34 9.14
Automotive 1.411 1.349 1.257 1.188 15.76 11.91 5.43
Baby 1.507 1.442 1.359 1.258 16.51 12.73 7.44
Beauty 1.609 1.566 1.466 1.386 13.89 11.48 5.46
Books 1.122 1.089 1.055 0.976 12.94 10.30 7.43
CDs & Vinyl 1.014 0.980 0.956 0.914 9.93 6.81 4.46
Cell Phones & Accessories 2.083 2.040 1.787 1.689 18.92 17.23 5.50
Clothing, Shoes & Jewelry 1.491 1.430 1.316 1.266 15.09 11.48 3.78
Digital Music 0.775 0.749 0.725 0.688 11.22 8.12 5.07
Electronics 1.744 1.659 1.563 1.445 17.10 12.89 7.50
Grocery & Gourmet Food 1.386 1.345 1.284 1.187 14.42 11.76 7.57
Health & Personal Care 1.612 1.545 1.466 1.356 15.91 12.23 7.49
""" Home & Kitchen 1575 1.508 1443 1.317 ] 1638 12.69 876 1
""" Kindle Store 0949  0.05 0870 _0.834 1208 781 410
Movies & TV 1.246 1.207 1.193 1.112 10.75 7.88 6.80
___Musical Instruments_______1224 ___ 1160 ____1072 ___ 1034 ______ 551 _____1081_____349
______ Office Products """ 1650 ___ 1569 1d7é 1337 " U898 1479 930 ]
Patio, Lawn & Garden 1.696 1.622 1.510 1.403 17.30 13.51 7.09
Pet Supplies 1.628 1.565 1.485 1.377 15.41 12.05 7.28
Sports & Outdoors 1.354 1.300 1.221 1.137 16.04 12.55 6.86
Tools & Home Improvement 1.474 1.429 1.348 1.230 16.51 13.93 8.74
Toys & Games 1.298 1.227 1.131 1.075 17.16 12.34 4.88
Video Games 1.533 1.498 1.383 1.292 15.72 13.72 6.57
B L S L AN SO SO
Average 1.437 1.385 1.304 1.218 14.95 11.73 6.47




Experimental Results

[> Statistically significant improvements over all 3 state-of-the-art
baseline methods, based on the paired sample t-test

 The average improvement over D-Attn, DeepCoNN, and ALFM
are 14.95%, 11.73%, and 6.47%, respectively

> Outperforms D-Attn and DeepCoNN due to 2 main reasons:

* |nstead of having a single ‘compressed’ user and item
representation, we learn multiple aspect-level representations
« Additionally, we estimate the importance of each aspect

> We outperform a similar aspect-based method ALFM as we learn
both the aspect-level representations and importance in a joint
manner



Number of Aspects
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> Key Hyperparameter: Number of Aspects

> In our experiments, we use 5 aspects to be consistent with ALFM
> Relatively stable performance for a reasonable number of aspects

 Ahandful of broader aspects
 Numerous fine-grained aspects



Price Family Negative @~ Gameplay Graphics
works son bad lot bought
recommend new little hours pretty
well highly horrible bit still
buy story waste couple graphics
bought tavorite hard characters much
awesome part boring stars think
price character terrible course work
loves daughter  frustrating minutes  recommend
worth controller difficult side cool
purchase  characters disappointed fan nice

> Aspects are learned in a data-driven manner without any external

supervision

> We use the words with the highest attention scores (averaged
across all users & items) to represent each aspect



4.

Future Work & Conclusion



Future Work

1.

>

>

Explainable Recommendation

For each user-item interaction, ANR is capable of estimating the
importance of each aspect

For the top K (most important) aspects, we can identify the
relevant document segments which contribute to its
representation

Domain-independent Aspect-based Recommendation

Currently, a separate model needs to be trained for each
category/domain

Extend ANR into a domain-independent framework, which will be
able to handle multiple categories simultaneously, by incorporating
either transfer learning or multi-task learning



Summary

> We proposed an Aspect-based Neural Recommender (ANR)
to leverage the strengths of both deep learning techniques
and aspect-based recommender systems

> Aspect-level representations are learned by focusing on
relevant words in the document using the neural attention
mechanism

> Interaction-specific aspect importance are estimated
using the user and item aspect-level representations by
extending the neural co-attention mechanism

> We effectively combine the aspect-level representations
and importance to derive the aspect-level ratings, which
are used for estimating the overall rating



Thanks!

Any questions?

Email:
S$160005@e.ntu.edu.sg



