Domain Adaptation with Adversarial Training and Graph Embeddings

Qatar Computing Research Institute (QCRI), HBKU, Qatar School of Computer Science and Engineering†
Nanyang Technological University (NTU), Singapore†

Firoj Alam
@firojalam04

Shafiq Joty†

Muhammad Imran
@mimran15
Disaster events (earthquake, flood)

Urgent needs for affected people
- Food, water
- Shelter
- Medical assistance
- Donations
- Service and utilities

Information gathering in real-time is the most challenging part

Relief operations

Humanitarian organizations and local administration need information to help and launch response
Artificial Intelligence for Digital Response (AIDR)

Response time-line today

- Delayed decision-making
- Delayed crisis response

Response time-line our target

- Early decision-making
- Rapid crisis response
Artificial Intelligence for Digital Response

http://aidr.qcri.org

Expert/User/Crisis Manager

Facilitates decision makers

MicroMappers (Crowd Volunteers)

30k/min

Collection → Classifier(s) → Classifier-1, Classifier-2 → Model → Learner

Informative
Not informative
Don't know or can't judge

Text

Image

Raining Ash and No Rest: Firefighters Struggle to Contain California Wildfires, https://ti.co/O6FkYV5U #SocialMedia https://ti.co/HjUCJ7r6G6

California Wildfires Threaten Significant Losses for P/C Insurers, Moodya Says https://ti.co/6LiaTbYlZb https://ti.co/3dlUAAjxGb

Facilitates decision makers
Artificial Intelligence for Digital Response

http://aidr.qcri.org

Expert/User/Crisis Manager

Facilitates decision makers

MicroMappers (Crowd Volunteers)

Labeling task

Model

Learner

Collection

Classifier(s)

Classifier-1

Classifier-2

Facilitates decision makers

Text

30k/min

Image
Artificial Intelligence for Digital Response

http://aidr.qcri.org

Expert/User/Crisis Manager

- Small amount of label data and large amount of unlabeled data at the beginning of the event
- Can we use labeled data from the past event? What about domain shift?
Our Solutions/Contributions

• How to use large amount of unlabeled data and small amount of labeled data from the same event?
 ⇒ Graph-based semi-supervised
Our Solutions/Contributions

• How to use large amount of unlabeled data and small amount of labeled data from the same event?
 ⇒ Graph-based semi-supervised

• How to transfer knowledge from the past events
 ⇒ Adversarial domain adaptations
Domain Adaptation with Adversarial Training and Graph Embeddings

Shared Components

- Input tweet \(w_1 \)
- \(w_2 \)
- \(\ldots \)
- \(w_{n-1} \)
- \(w_n \)
- Pre-trained Word Embeddings
- Convolution
- Feature map
- Max pooling
- Dense (\(z \))

Supervised loss \(L_C \)

Semi-Supervised loss \(L_G \)

Domain adversary loss \(L_D \)

\[\lambda_d \frac{\partial L_D}{\partial \Psi} \]

\[\lambda_d \frac{\partial L_D}{\partial A} \]
Supervised Learning

Shared Components

Input tweet w_t

w_2

\vdots

w_{n-1}

w_n

Pre-trained Word Embeddings

Convolution

Feature map

Max pooling

Dense (z)

Dense (z_c)

Class label

Supervised loss L_C

$\mathcal{L}_C(\Lambda, \Phi)$
Semi-Supervised Learning

• Semi-Supervised component
Semi-Supervised Learning

- L: number of labeled instances $(x_{1:L}, y_{1:L})$
- U: number of unlabeled instances $(x_{L+1:L+U})$
- Design a classifier $f: x \rightarrow y$
Assumption: If two instances are similar according to the graph, then class labels should be similar.
Graph based Semi-Supervised Learning

Two Steps:
• Graph Construction
• Classification
Graph based Semi-Supervised Learning

• Graph Representation
 – Nodes: Instances (labeled and unlabeled)
 – Edges: $n \times n$ similarity matrix
 – Each entry $a_{i,j}$ indicates a similarity between instance i and j
Graph based Semi-Supervised Learning

- **Graph Construction**
 - We construct the graph using k-nearest neighbor (k=10)
 - *Euclidian distance*
 - Requires \(n(n-1)/2\) distance computation
 - *K-d tree data structure to reduce the computational complexity \(O(\log N)\)*
 - **Feature Vector:** taking the averaging of the word2vec vectors
Graph based Semi-Supervised Learning

• Semi-Supervised component: Loss function

\[\mathcal{L}(\Lambda, \Phi, \Omega) = \mathcal{L}_C(\Lambda, \Phi) + \lambda_g \mathcal{L}_G(\Lambda, \Omega) \]

Graph context loss

\[\mathcal{L}_G(\Lambda, \Omega) = -\frac{1}{L_s + U_s} \sum_{i=1}^{L_s+U_s} \mathbb{E}_{(j,\gamma)} \log \sigma \left(\gamma C^T_j z_g(i) \right) \] (Yang et al., 2016)

Learns the internal representations (embedding) by predicting a node in the graph context
Graph based Semi-Supervised Learning

• Semi-Supervised component: Loss function

\[
\mathcal{L}_G(\Lambda, \Omega) = - \frac{1}{L_s + U_s} \sum_{i=1}^{L_s + U_s} \mathbb{E}_{(j, \gamma)} \log \sigma \left(\gamma C^T_j z_g(i) \right)
\] (Yang et al., 2016)

Two types of context
1. Context is based on the graph to encode structural (distributional) information
Graph based Semi-Supervised Learning

- **Semi-Supervised component:** Loss function

\[
\mathcal{L}_G(\Lambda, \Omega) = - \frac{1}{L_s + U_s} \sum_{i=1}^{L_s+U_s} \mathbb{E}_{(j, \gamma)} \log \sigma \left(\gamma C_j^T z_g(i) \right) \quad \text{(Yang et al., 2016)}
\]

Two types of context

1. Context is based on the graph to encode structural (distributional) information
2. Context is based on the labels to inject label information into the embeddings
Graph based Semi-Supervised Learning

- **Semi-Supervised component:** Loss function

\[
\mathcal{L}(\Lambda, \Phi, \Omega) = \mathcal{L}_C(\Lambda, \Phi) + \lambda_g \mathcal{L}_G(\Lambda, \Omega)
\]

- \(\Lambda = \{U, V\}\) Convolution filters and dense layer parameters
- \(\Phi = \{V_c, W\}\) Parameters specific to the supervised part
- \(\Omega = \{V_g, C\}\) Parameters specific to the semi-supervised part
Domain Adaptation with Adversarial Training and Graph Embeddings

Shared Components

- Input tweet \(w_1 \)
- \(w_2 \)
- \(\ldots \)
- \(w_{n-1} \)
- \(w_n \)

Pre-trained Word Embeddings

Convolution

Feature map

Max pooling

Dense (\(z \))

Supervised loss \(L_C \)

Class label

Softmax

Semi-Supervised loss \(L_G \)

Dense (\(z_g \))
Graph context

Sigmoid

Domain adversary loss \(L_D \)

Dense (\(z_d \))
Domain label

\(\lambda_d \left(\frac{\partial L_D}{\partial \Psi} \right) \)

\(\frac{\partial L_D}{\partial \Lambda} \)
Domain Adaptation with Adversarial Training

Domain discriminator is defined by:

$$\hat{\delta} = p(d = 1|t, \Lambda, \Psi) = \text{sigm}(w_d^T z_d)$$

Negative log probability of the discriminator loss:

$$J_i(\Lambda, \Psi) = -d_i \log \hat{\delta} - (1 - d_i) \log \left(1 - \hat{\delta}\right)$$

Domain adversary loss is defined by:

$$L_D(\Lambda, \Psi) = -\frac{1}{L_s + U_s} \sum_{i=1}^{L_s+U_s} J_i(\Lambda, \Psi) - \frac{1}{U_t} \sum_{i=1}^{U_t} J_i(\Lambda, \Psi)$$

$$d \in \{0,1\}$$ represents the domain of the input tweet $$t$$

$$\Lambda = \{U,V\}$$ Convolution filters and dense layer parameters

$$\Psi = \{V_d, w_d\}$$ Parameters specific to the domain discriminator part
Domain Adaptation with Adversarial Training and Graph Embeddings

- **Combined loss**

\[\mathcal{L}(\Lambda, \Phi, \Omega, \Psi) = \mathcal{L}_C(\Lambda, \Phi) + \lambda_g \mathcal{L}_G(\Lambda, \Omega) + \lambda_d \mathcal{L}_D(\Lambda, \Psi) \]

We seek parameters that minimizes the classification loss of the class labels and maximizes domain discriminator loss

\[\theta^* = \arg\min_{\Lambda, \Phi, \Omega} \max_{\Psi} \mathcal{L}(\Lambda, \Phi, \Omega, \Psi) \]

- \(\Lambda = \{U, V\} \) Convolution filters and dense layer parameters
- \(\Phi = \{V_c, W\} \) Parameters specific to the supervised part
- \(\Omega = \{V_g, C\} \) Parameters specific to the semi-supervised part
- \(\Psi = \{V_d, w_d\} \) Parameters specific to the domain discriminator part
Algorithm 1: Model Training with SGD

Input: data \mathcal{D}_S^l, \mathcal{D}_S^u, \mathcal{D}_T^u; graph G

Output: learned parameters $\theta = \{\Lambda, \Phi\}$

1. Initialize model parameters $\{E, \Lambda, \Phi, \Omega, \Psi\}$;
2. repeat
 // Semi-supervised
 for each batch sampled from $p(j, \gamma|i, \mathcal{D}_S^l, \mathcal{D}_S^u, G)$ do
 a) Compute loss $\mathcal{L}_G(\Lambda, \Omega)$
 b) Take a gradient step for $\mathcal{L}_G(\Lambda, \Omega)$;
 end
 // Supervised & domain adversary
 for each batch sampled from \mathcal{D}_S^l do
 a) Compute $\mathcal{L}_C(\Lambda, \Phi)$ and $\mathcal{L}_D(\Lambda, \Psi)$
 b) Take gradient steps for $\mathcal{L}_C(\Lambda, \Phi)$ and $\mathcal{L}_D(\Lambda, \Psi)$;
 end
 // Domain adversary
 for each batch sampled from \mathcal{D}_T^u do
 a) Compute $\mathcal{L}_D(\Lambda, \Psi)$
 b) Take a gradient step for $\mathcal{L}_D(\Lambda, \Psi)$;
 end
3. until convergence;
Corpus

• **Collected during:**
 – 2015 Nepal earthquake
 – 2013 Queensland flood

• A small part of the tweets has been annotated using crowdflower
 – **Relevant:** injured or dead people, infrastructure damage, urgent needs of affected people, donation requests
 – **Irrelevant:** otherwise

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Relevant</th>
<th>Irrelevant</th>
<th>Train (60%)</th>
<th>Dev (20%)</th>
<th>Test (20%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nepal earthquake</td>
<td>5,527</td>
<td>6,141</td>
<td>7,000</td>
<td>1,167</td>
<td>3,503</td>
</tr>
<tr>
<td>Queensland flood</td>
<td>5,414</td>
<td>4,619</td>
<td>6,019</td>
<td>1,003</td>
<td>3,011</td>
</tr>
</tbody>
</table>

Unlabeled Instances
- Nepal earthquake: 50K
- Queensland flood: 21K
Experiments and Results

• **Supervised baseline:**
 – Model trained using Convolution Neural Network (CNN)

• **Semi-Supervised baseline (Self-training):**
 – Model trained using CNN were used to automatically label unlabeled data
 – Instances with classifier confidence ≥ 0.75 were used to retrain a new model
Experiments and Results

Semi-Supervised baseline (Self-training)

<table>
<thead>
<tr>
<th>Experiments</th>
<th>AUC</th>
<th>P</th>
<th>R</th>
<th>F1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nepal Earthquake</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supervised</td>
<td>61.22</td>
<td>62.42</td>
<td>62.31</td>
<td>60.89</td>
</tr>
<tr>
<td>Semi-Supervised (Self-training)</td>
<td>61.15</td>
<td>61.53</td>
<td>61.53</td>
<td>61.26</td>
</tr>
<tr>
<td>Semi-Supervised (Graph-based)</td>
<td>64.81</td>
<td>64.58</td>
<td>64.63</td>
<td>65.11</td>
</tr>
<tr>
<td>Queensland Flood</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supervised</td>
<td>80.14</td>
<td>80.08</td>
<td>80.16</td>
<td>80.16</td>
</tr>
<tr>
<td>Semi-Supervised (Self-training)</td>
<td>81.04</td>
<td>80.78</td>
<td>80.84</td>
<td>81.08</td>
</tr>
<tr>
<td>Semi-Supervised (Graph-based)</td>
<td>92.20</td>
<td>92.60</td>
<td>94.49</td>
<td>93.54</td>
</tr>
</tbody>
</table>
Experiments and Results

- **Domain Adaptation Baseline (Transfer Baseline):** Trained CNN model on source (an event) and tested on target (another event)

<table>
<thead>
<tr>
<th>Source</th>
<th>Target</th>
<th>AUC</th>
<th>P</th>
<th>R</th>
<th>F1</th>
</tr>
</thead>
<tbody>
<tr>
<td>In-Domain Supervised Model</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nepal</td>
<td>Nepal</td>
<td>61.22</td>
<td>62.42</td>
<td>62.31</td>
<td>60.89</td>
</tr>
<tr>
<td>Queensland</td>
<td>Queensland</td>
<td>80.14</td>
<td>80.08</td>
<td>80.16</td>
<td>80.16</td>
</tr>
<tr>
<td>Transfer Baseline</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nepal</td>
<td>Queensland</td>
<td>58.99</td>
<td>59.62</td>
<td>60.03</td>
<td>59.10</td>
</tr>
<tr>
<td>Queensland</td>
<td>Nepal</td>
<td>54.86</td>
<td>56.00</td>
<td>56.21</td>
<td>53.63</td>
</tr>
</tbody>
</table>
Experiments and Results

- **Domain Adaptation**

<table>
<thead>
<tr>
<th>Source</th>
<th>Target</th>
<th>AUC</th>
<th>P</th>
<th>R</th>
<th>F1</th>
</tr>
</thead>
<tbody>
<tr>
<td>In-Domain Supervised Model</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nepal</td>
<td>Nepal</td>
<td>61.22</td>
<td>62.42</td>
<td>62.31</td>
<td>60.89</td>
</tr>
<tr>
<td>Queensland</td>
<td>Queensland</td>
<td>80.14</td>
<td>80.08</td>
<td>80.16</td>
<td>80.16</td>
</tr>
<tr>
<td>Transfer Baseline</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nepal</td>
<td>Queensland</td>
<td>58.99</td>
<td>59.62</td>
<td>60.03</td>
<td>59.10</td>
</tr>
<tr>
<td>Queensland</td>
<td>Nepal</td>
<td>54.86</td>
<td>56.00</td>
<td>56.21</td>
<td>53.63</td>
</tr>
<tr>
<td>Domain Adversarial</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nepal</td>
<td>Queensland</td>
<td>60.15</td>
<td>60.62</td>
<td>60.71</td>
<td>60.94</td>
</tr>
<tr>
<td>Queensland</td>
<td>Nepal</td>
<td>57.63</td>
<td>58.05</td>
<td>58.05</td>
<td>57.79</td>
</tr>
</tbody>
</table>
Experiments and Results

Combining all the components of the network

<table>
<thead>
<tr>
<th>Source</th>
<th>Target</th>
<th>AUC</th>
<th>P</th>
<th>R</th>
<th>F1</th>
</tr>
</thead>
<tbody>
<tr>
<td>In-Domain Supervised Model</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nepal</td>
<td>Nepal</td>
<td>61.22</td>
<td>62.42</td>
<td>62.31</td>
<td>60.89</td>
</tr>
<tr>
<td>Queensland</td>
<td>Queensland</td>
<td>80.14</td>
<td>80.08</td>
<td>80.16</td>
<td>80.16</td>
</tr>
<tr>
<td>Transfer Baseline</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nepal</td>
<td>Queensland</td>
<td>58.99</td>
<td>59.62</td>
<td>60.03</td>
<td>59.10</td>
</tr>
<tr>
<td>Queensland</td>
<td>Nepal</td>
<td>54.86</td>
<td>56.00</td>
<td>56.21</td>
<td>53.63</td>
</tr>
<tr>
<td>Domain Adversarial</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nepal</td>
<td>Queensland</td>
<td>60.15</td>
<td>60.62</td>
<td>60.71</td>
<td>60.94</td>
</tr>
<tr>
<td>Queensland</td>
<td>Nepal</td>
<td>57.63</td>
<td>58.05</td>
<td>58.05</td>
<td>57.79</td>
</tr>
<tr>
<td>Domain Adversarial with Graph Embedding</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nepal</td>
<td>Queensland</td>
<td>66.49</td>
<td>67.48</td>
<td>65.90</td>
<td>65.92</td>
</tr>
<tr>
<td>Queensland</td>
<td>Nepal</td>
<td>58.81</td>
<td>58.63</td>
<td>59</td>
<td>59.05</td>
</tr>
</tbody>
</table>
Summary

• We have seen how graph-embedding based semi-supervised approach can be useful for small labeled data scenario

• How can we use existing data and apply domain adaptation technique

• We propose how both techniques can be combined
Limitation and Future Study

Limitations:
• Graph embedding is computationally expensive
• Graph constructed using averaged vector from word2vec
• Explored binary class problem

Future Study
• Convoluted feature for graph construction
• Hyper-parameter tuning
• Domain adaptation: labeled and unlabeled data from target
Thank you!

To get the data: http://crisisnlp.qcri.org/

Please follow us @aidr_qcri

Firoj Alam, Shafiq Joty, Muhammad Imran. Domain Adaptation with Adversarial Training and Graph Embeddings. ACL, 2018, Melbourne, Australia.