
•  Data (human pairwise judgments):

•  Training:

 Optimization: SGD+adagrad for 10k epochs

 with early stopping and L2 regularization

 Learning rate: 0.01

 Mini batch size: 30

 Weight initialization: uniform [-0.01, 0.01]

 Hidden layer size: 4 with tanh activations

•  Evaluation: WMT12 version of Kendall’s tau

Motivation Setting

Pairwise MT Evaluation

Why Neural Networks?

•  Pairwise lexical features: BLEU, METEOR, NIST, TER

•  Word embeddings:

•  State-of-the-art uses computationally expensive tree
kernels (esp. at test time). NNs provide fast inference

•  NNs can learn effectively from compact semantic and
syntactic distributed representations

•  They are highly competitive

Features

§  Kendall’s-tau:	

Pairwise Neural Machine Translation Evaluation
Francisco Guzmán, Shafiq Joty, Lluís Màrquez and Preslav Nakov

Qatar Computing Research Institute, HBKU

NN with Different Features	

Other Metrics	

BLEU Components + Embeddings	

Different Semantic Embeddings	

 Logistic vs. Kendall Cost	

Learning Task
•  Binary classification:

•  Model:

However, in that work we used convolution ker-
nels, which is computationally expensive and does
not scale well to large datasets and complex struc-
tures such as graphs and enriched trees. This in-
efficiency arises both at training and testing time.
Thus, here we use neural embeddings and multi-
layer neural networks, which yields an efficient
learning framework that works significantly better
on the same datasets (although we are not using
exactly the same information for learning).

To the best of our knowledge, the application
of structured neural embeddings and a neural net-
work learning architecture for MT evaluation is
completely novel. This is despite the growing in-
terest in recent years for deep neural nets (NNs)
and word embeddings with application to a myr-
iad of NLP problems. For example, in SMT we
have observed an increased use of neural nets for
language modeling (Bengio et al., 2003; Mikolov
et al., 2010) as well as for improving the transla-
tion model (Devlin et al., 2014; Sutskever et al.,
2014).

Deep learning has spread beyond language
modeling. For example, recursive NNs have been
used for syntactic parsing (Socher et al., 2013a)
and sentiment analysis (Socher et al., 2013b). The
increased use of NNs by the NLP community is
in part due to (i) the emergence of tools such as
word2vec (Mikolov et al., 2013a) and GloVe (Pen-
nington et al., 2014), which have enabled NLP re-
searchers to learn word embeddings, and (ii) uni-
fied learning frameworks, e.g., (Collobert et al.,
2011), which cover a variety of NLP tasks such
as part-of-speech tagging, chunking, named entity
recognition, and semantic role labeling.

While in this work we make use of widely avail-
able pre-computed structured embeddings, the
novelty of our work goes beyond the type of infor-
mation considered as input, and resides on the way
it is integrated to a neural network architecture that
is inspired by our intuitions about MT evaluation.

3 Neural Ranking Model

Our motivation for using neural networks for MT
evaluation is twofold. First, to take advantage of
their ability to model complex non-linear relation-
ships efficiently. Second, to have a framework
that allows for easy incorporation of rich syntac-
tic and semantic representations captured by word
embeddings, which are in turn learned using deep
learning.

3.1 Learning Task

Given two translation hypotheses t1 and t2 (and a
reference translation r), we want to tell which of
the two is better.2 Thus, we have a binary classifi-
cation task, which is modeled by the class variable
y, defined as follows:

y =

⇢
1 if t1 is better than t2 given r
0 if t1 is worse than t2 given r

(1)

We model this task using a feed-forward neural
network (NN) of the form:

p(y|t1, t2, r) = Ber(y|f(t1, t2, r)) (2)

which is a Bernoulli distribution of y with param-
eter � = f(t1, t2, r), defined as follows:

f(t1, t2, r) = sig(w

T
v �(t1, t2, r) + bv) (3)

where sig is the sigmoid function, �(x) defines the
transformations of the input x through the hidden
layer, wv are the weights from the hidden layer to
the output layer, and bv is a bias term.

3.2 Network Architecture

In order to decide which hypothesis is better given
the tuple (t1, t2, r) as input, we first map the hy-
potheses and the reference to a fixed-length vec-
tor [xt1 ,xt2 ,xr], using syntactic and semantic em-
beddings. Then, we feed this vector as input to
our neural network, whose architecture is shown
in Figure 1.

Figure 1: Overall architecture of the neural network.

In our architecture, we model three types of in-
teractions, using different groups of nodes in the
hidden layer. We have two evaluation groups h1r

and h2r that model how similar each hypothesis ti
is to the reference r.

2In this work, we do not learn to predict ties, and ties are
excluded from our training data.

However, in that work we used convolution ker-
nels, which is computationally expensive and does
not scale well to large datasets and complex struc-
tures such as graphs and enriched trees. This in-
efficiency arises both at training and testing time.
Thus, here we use neural embeddings and multi-
layer neural networks, which yields an efficient
learning framework that works significantly better
on the same datasets (although we are not using
exactly the same information for learning).

To the best of our knowledge, the application
of structured neural embeddings and a neural net-
work learning architecture for MT evaluation is
completely novel. This is despite the growing in-
terest in recent years for deep neural nets (NNs)
and word embeddings with application to a myr-
iad of NLP problems. For example, in SMT we
have observed an increased use of neural nets for
language modeling (Bengio et al., 2003; Mikolov
et al., 2010) as well as for improving the transla-
tion model (Devlin et al., 2014; Sutskever et al.,
2014).

Deep learning has spread beyond language
modeling. For example, recursive NNs have been
used for syntactic parsing (Socher et al., 2013a)
and sentiment analysis (Socher et al., 2013b). The
increased use of NNs by the NLP community is
in part due to (i) the emergence of tools such as
word2vec (Mikolov et al., 2013a) and GloVe (Pen-
nington et al., 2014), which have enabled NLP re-
searchers to learn word embeddings, and (ii) uni-
fied learning frameworks, e.g., (Collobert et al.,
2011), which cover a variety of NLP tasks such
as part-of-speech tagging, chunking, named entity
recognition, and semantic role labeling.

While in this work we make use of widely avail-
able pre-computed structured embeddings, the
novelty of our work goes beyond the type of infor-
mation considered as input, and resides on the way
it is integrated to a neural network architecture that
is inspired by our intuitions about MT evaluation.

3 Neural Ranking Model

Our motivation for using neural networks for MT
evaluation is twofold. First, to take advantage of
their ability to model complex non-linear relation-
ships efficiently. Second, to have a framework
that allows for easy incorporation of rich syntac-
tic and semantic representations captured by word
embeddings, which are in turn learned using deep
learning.

3.1 Learning Task

Given two translation hypotheses t1 and t2 (and a
reference translation r), we want to tell which of
the two is better.2 Thus, we have a binary classifi-
cation task, which is modeled by the class variable
y, defined as follows:

y =

⇢
1 if t1 is better than t2 given r
0 if t1 is worse than t2 given r

(1)

We model this task using a feed-forward neural
network (NN) of the form:

p(y|t1, t2, r) = Ber(y|f(t1, t2, r)) (2)

which is a Bernoulli distribution of y with param-
eter � = f(t1, t2, r), defined as follows:

f(t1, t2, r) = sig(w

T
v �(t1, t2, r) + bv) (3)

where sig is the sigmoid function, �(x) defines the
transformations of the input x through the hidden
layer, wv are the weights from the hidden layer to
the output layer, and bv is a bias term.

3.2 Network Architecture

In order to decide which hypothesis is better given
the tuple (t1, t2, r) as input, we first map the hy-
potheses and the reference to a fixed-length vec-
tor [xt1 ,xt2 ,xr], using syntactic and semantic em-
beddings. Then, we feed this vector as input to
our neural network, whose architecture is shown
in Figure 1.

Figure 1: Overall architecture of the neural network.

In our architecture, we model three types of in-
teractions, using different groups of nodes in the
hidden layer. We have two evaluation groups h1r

and h2r that model how similar each hypothesis ti
is to the reference r.

2In this work, we do not learn to predict ties, and ties are
excluded from our training data.

However, in that work we used convolution ker-
nels, which is computationally expensive and does
not scale well to large datasets and complex struc-
tures such as graphs and enriched trees. This in-
efficiency arises both at training and testing time.
Thus, here we use neural embeddings and multi-
layer neural networks, which yields an efficient
learning framework that works significantly better
on the same datasets (although we are not using
exactly the same information for learning).

To the best of our knowledge, the application
of structured neural embeddings and a neural net-
work learning architecture for MT evaluation is
completely novel. This is despite the growing in-
terest in recent years for deep neural nets (NNs)
and word embeddings with application to a myr-
iad of NLP problems. For example, in SMT we
have observed an increased use of neural nets for
language modeling (Bengio et al., 2003; Mikolov
et al., 2010) as well as for improving the transla-
tion model (Devlin et al., 2014; Sutskever et al.,
2014).

Deep learning has spread beyond language
modeling. For example, recursive NNs have been
used for syntactic parsing (Socher et al., 2013a)
and sentiment analysis (Socher et al., 2013b). The
increased use of NNs by the NLP community is
in part due to (i) the emergence of tools such as
word2vec (Mikolov et al., 2013a) and GloVe (Pen-
nington et al., 2014), which have enabled NLP re-
searchers to learn word embeddings, and (ii) uni-
fied learning frameworks, e.g., (Collobert et al.,
2011), which cover a variety of NLP tasks such
as part-of-speech tagging, chunking, named entity
recognition, and semantic role labeling.

While in this work we make use of widely avail-
able pre-computed structured embeddings, the
novelty of our work goes beyond the type of infor-
mation considered as input, and resides on the way
it is integrated to a neural network architecture that
is inspired by our intuitions about MT evaluation.

3 Neural Ranking Model

Our motivation for using neural networks for MT
evaluation is twofold. First, to take advantage of
their ability to model complex non-linear relation-
ships efficiently. Second, to have a framework
that allows for easy incorporation of rich syntac-
tic and semantic representations captured by word
embeddings, which are in turn learned using deep
learning.

3.1 Learning Task

Given two translation hypotheses t1 and t2 (and a
reference translation r), we want to tell which of
the two is better.2 Thus, we have a binary classifi-
cation task, which is modeled by the class variable
y, defined as follows:

y =

⇢
1 if t1 is better than t2 given r
0 if t1 is worse than t2 given r

(1)

We model this task using a feed-forward neural
network (NN) of the form:

p(y|t1, t2, r) = Ber(y|f(t1, t2, r)) (2)

which is a Bernoulli distribution of y with param-
eter � = f(t1, t2, r), defined as follows:

f(t1, t2, r) = sig(w

T
v �(t1, t2, r) + bv) (3)

where sig is the sigmoid function, �(x) defines the
transformations of the input x through the hidden
layer, wv are the weights from the hidden layer to
the output layer, and bv is a bias term.

3.2 Network Architecture

In order to decide which hypothesis is better given
the tuple (t1, t2, r) as input, we first map the hy-
potheses and the reference to a fixed-length vec-
tor [xt1 ,xt2 ,xr], using syntactic and semantic em-
beddings. Then, we feed this vector as input to
our neural network, whose architecture is shown
in Figure 1.

Figure 1: Overall architecture of the neural network.

In our architecture, we model three types of in-
teractions, using different groups of nodes in the
hidden layer. We have two evaluation groups h1r

and h2r that model how similar each hypothesis ti
is to the reference r.

2In this work, we do not learn to predict ties, and ties are
excluded from our training data.

•  Cost function:

The vector representations of the hypothesis
(i.e., xt1 or xt2) together with the reference
(i.e., xr) constitute the input to the hidden nodes
in these two groups. The third group of hidden
nodes h12, which we call similarity group, mod-
els how close t1 and t2 are. This might be useful
as highly similar hypotheses are likely to be com-
parable in quality, irrespective of whether they are
good or bad in absolute terms.

The input to each of these groups is repre-
sented by concatenating the vector representations
of the two components participating in the inter-
action, i.e., x1r = [xt1 ,xr], x2r = [xt2 ,xr],
x12 = [xt1 ,xt2]. In summary, the transformation
�(t1, t2, r) = [h12,h1r,h2r] in our NN architec-
ture can be written as follows:

h1r = g(W1rx1r + b1r)

h2r = g(W2rx2r + b2r)

h12 = g(W12x12 + b12)

where g(.) is a non-linear activation function (ap-
plied component-wise), W 2 RH⇥N are the asso-
ciated weights between the input layer and the hid-
den layer, and b are the corresponding bias terms.
In our experiments, we used tanh as an activation
function, rather than sig, to be consistent with how
parts of our input vectors were generated.3

In addition, our model allows to incorporate ex-
ternal sources of information by enabling skip arcs
that go directly from the input to the output, skip-
ping the hidden layer. In our setting, these arcs
represent pairwise similarity features between the
translation hypotheses and the reference (e.g., the
BLEU scores of the translations). We denote these
pairwise external feature sets as 1r = (t1, r)
and 2r = (t2, r). When we include the external
features in our architecture, the activation at the
output, i.e., eq. (3), can be rewritten as follows:

f(t1, t2, r) = sig(w

T
v [�(t1, t2, r), 1r, 2r] + bv)

3.3 Network Training

The negative log likelihood of the train-
ing data for the model parameters
✓ = (W12,W1r,W2r,wv,b12,b1r,b2r, bv)
can be written as follows:

J✓ = �
X

n

yn log ŷn✓ + (1� yn) log (1� ŷn✓)

(4)
3Many of our input representations consist of word em-

beddings trained with neural networks that used tanh as an
activation function.

In the above formula, ŷn✓ = fn(t1, t2, r) is
the activation at the output layer for the n-th
data instance. It is also common to use a reg-
ularized cost function by adding a weight decay
penalty (e.g., L2 or L1 regularization) and to per-
form maximum aposteriori (MAP) estimation of
the parameters. We trained our network with
stochastic gradient descent (SGD), mini-batches
and adagrad updates (Duchi et al., 2011), using
Theano (Bergstra et al., 2010).

4 Experimental Setup

In this section, we describe the different aspects
of our general experimental setup (we will discuss
some extensions thereof in Section 6), starting
with a description of the input representations we
use to capture the syntactic and semantic charac-
teristics of the two hypothesis translations and the
corresponding reference, as well as the datasets
used to evaluate the performance of our model.

4.1 Word Embedding Vectors

Word embeddings play a crucial role in our model,
since they allow us to model complex relations
between the translations and the reference using
syntactic and semantic vector representations.

Syntactic vectors. We generate a syntactic vector
for each sentence using the Stanford neural parser
(Socher et al., 2013a), which generates a 25-
dimensional vector as a by-product of syntactic
parsing using a recursive NN. Below we will refer
to these vectors as SYNTAX25.

Semantic vectors. We compose a semantic vector
for a given sentence using the average of the em-
bedding vectors for the words it contains (Mitchell
and Lapata, 2010). We use pre-trained, fixed-
length word embedding vectors produced by
(i) GloVe (Pennington et al., 2014), (ii) COM-
POSES (Baroni et al., 2014), and (iii) word2vec
(Mikolov et al., 2013b).

Our primary representation is based on 50-
dimensional GloVe vectors, trained on Wikipedia
2014+Gigaword 5 (6B tokens), to which below we
will refer as WIKI-GW25.

Furthermore, we experiment with WIKI-
GW300, the 300-dimensional GloVe vectors
trained on the same data, as well as with the CC-
300-42B and CC-300-840B, 300-dimensional
GloVe vectors trained on 42B and on 840B tokens
from Common Crawl.

§  Negative log-likelihood:	

Kendall’s ⌧

Details cz de es fr AVG

Logistic 26.30 33.19 30.38 28.92 29.70
Kendall 27.04 33.60 29.48 28.54 29.53
Log.+Ken. 26.90 33.17 30.40 29.21 29.92

Table 5: Kendall’s tau (⌧) on WMT12 for alternative cost
functions using 4METRICS+SYNTAX25+WIKI-GW25.

For our specific task, given an input tuple
(t1, t2, r), we want to make sure that the difference
between the two output activations � = � � �0 is
positive when y = 1, and negative when y = 0.
Ensuring this would take us closer to the actual
objective, which is Kendall’s ⌧ . One possible way
to do this is to introduce a task-specific cost func-
tion that penalizes the disagreements similarly to
the way Kendall’s ⌧ does.4 In particular, we de-
fine a new Kendall cost as follows:

J✓ = �
X

n

yn sig(���n) + (1� yn) sig(��n)

(6)
where we use the sigmoid function sig as a differ-
entiable approximation to the step function.

The above cost function penalizes disconcor-
dances, i.e., cases where (i) y = 1 but � < 0,
or (ii) when y = 0 but � > 0. However, we also
need to make sure that we discourage ties. We do
so by adding a zero-mean Gaussian regularization
term exp(���2/2) that penalizes the value of �
getting close to zero. Note that the specific val-
ues for � and � are not really important, as long
as they are large. In particular, in our experiments,
we used � = � = 100.

Table 5 shows a comparison of the two cost
functions: (i) the standard logistic cost, and (ii) our
Kendall cost. We can see that using the Kendall
cost enables effective learning, although it is even-
tually outperformed by the logistic cost. Our in-
vestigation revealed that this was due to a combi-
nation of slower convergence and poor initializa-
tion. Therefore, we further experimented with a
setup where we first used the logistic cost to pre-
train the neural network, and then we switched to
the Kendall cost in order to perform some finer
tuning. As we can see in Table 5 (last row), do-
ing so yielded a sizable improvement over using
the Kendall cost only; it also improved over using
the logistic cost only.

4Other variations for ranking tasks are possible, e.g., (Yih
et al., 2011).

7 Conclusions and Future Work

We have presented a novel framework for learn-
ing a tunable MT evaluation metric in a pairwise
ranking setting, given pre-existing pairwise human
preference judgments.

In particular, we used a neural network, where
the input layer encodes lexical, syntactic and se-
mantic information from the reference and the two
translation hypotheses, which is efficiently com-
pacted into relatively small embeddings. The net-
work has a hidden layer, motivated by our intuition
about the problem, which captures the interactions
between the relevant input components. Unlike
previously proposed kernel-based approaches, our
framework allows us to do both training and in-
ference efficiently. Moreover, we have shown that
it can be trained to optimize a task-specific cost
function, which is more appropriate for the pair-
wise MT evaluation setting.

The evaluation results have shown that our NN
model yields state-of-the-art results when using
lexical, syntactic and semantic features (the latter
two based on compact embeddings). Moreover,
we have shown that the contribution of the differ-
ent information sources is additive, thus demon-
strating that the framework can effectively inte-
grate complementary information. Furthermore,
the framework is flexible enough to exploit dif-
ferent granularities of features such as n-gram
matches and other components of BLEU (which
individually work better than using the aggregated
BLEU score). Finally, we have presented evidence
suggesting that using the pairwise hidden layers is
advantageous over simpler flat models.

In future work, we would like to experiment
with an extension that allows for multiple refer-
ences. We further plan to incorporate features
from the source sentence. We believe that our
framework can support learning similarities be-
tween the two translations and the source, for an
improved MT evaluation. Variations of this ar-
chitecture might be useful for related tasks such
as Quality Estimation and hypothesis re-ranking
for Machine Translation, where no references are
available.

Other aspects worth studying as a complement
to the present work include (i) the impact of the
quality of the syntactic analysis (translations are
often just a “word salad”), (ii) differences across
language pairs, and (iii) the relevance of the do-
main the semantic representations are trained on.

§  Syntactic embeddings from an RNN parser (Socher et al. 2013)

§  Semantic embeddings from word2vec, GloVE, COMPOSES

Kendall’s ⌧

Details cz de es fr AVG

Logistic 26.30 33.19 30.38 28.92 29.70
Kendall 27.04 33.60 29.48 28.54 29.53
Log.+Ken. 26.90 33.17 30.40 29.21 29.92

Table 5: Kendall’s tau (⌧) on WMT12 for alternative cost
functions using 4METRICS+SYNTAX25+WIKI-GW25.

For our specific task, given an input tuple
(t1, t2, r), we want to make sure that the difference
between the two output activations � = � � �0 is
positive when y = 1, and negative when y = 0.
Ensuring this would take us closer to the actual
objective, which is Kendall’s ⌧ . One possible way
to do this is to introduce a task-specific cost func-
tion that penalizes the disagreements similarly to
the way Kendall’s ⌧ does.4 In particular, we de-
fine a new Kendall cost as follows:

J✓ = �
X

n

yn sig(���n) + (1� yn) sig(��n)

(6)
where we use the sigmoid function sig as a differ-
entiable approximation to the step function.

The above cost function penalizes disconcor-
dances, i.e., cases where (i) y = 1 but � < 0,
or (ii) when y = 0 but � > 0. However, we also
need to make sure that we discourage ties. We do
so by adding a zero-mean Gaussian regularization
term exp(���2/2) that penalizes the value of �
getting close to zero. Note that the specific val-
ues for � and � are not really important, as long
as they are large. In particular, in our experiments,
we used � = � = 100.

Table 5 shows a comparison of the two cost
functions: (i) the standard logistic cost, and (ii) our
Kendall cost. We can see that using the Kendall
cost enables effective learning, although it is even-
tually outperformed by the logistic cost. Our in-
vestigation revealed that this was due to a combi-
nation of slower convergence and poor initializa-
tion. Therefore, we further experimented with a
setup where we first used the logistic cost to pre-
train the neural network, and then we switched to
the Kendall cost in order to perform some finer
tuning. As we can see in Table 5 (last row), do-
ing so yielded a sizable improvement over using
the Kendall cost only; it also improved over using
the logistic cost only.

4Other variations for ranking tasks are possible, e.g., (Yih
et al., 2011).

7 Conclusions and Future Work

We have presented a novel framework for learn-
ing a tunable MT evaluation metric in a pairwise
ranking setting, given pre-existing pairwise human
preference judgments.

In particular, we used a neural network, where
the input layer encodes lexical, syntactic and se-
mantic information from the reference and the two
translation hypotheses, which is efficiently com-
pacted into relatively small embeddings. The net-
work has a hidden layer, motivated by our intuition
about the problem, which captures the interactions
between the relevant input components. Unlike
previously proposed kernel-based approaches, our
framework allows us to do both training and in-
ference efficiently. Moreover, we have shown that
it can be trained to optimize a task-specific cost
function, which is more appropriate for the pair-
wise MT evaluation setting.

The evaluation results have shown that our NN
model yields state-of-the-art results when using
lexical, syntactic and semantic features (the latter
two based on compact embeddings). Moreover,
we have shown that the contribution of the differ-
ent information sources is additive, thus demon-
strating that the framework can effectively inte-
grate complementary information. Furthermore,
the framework is flexible enough to exploit dif-
ferent granularities of features such as n-gram
matches and other components of BLEU (which
individually work better than using the aggregated
BLEU score). Finally, we have presented evidence
suggesting that using the pairwise hidden layers is
advantageous over simpler flat models.

In future work, we would like to experiment
with an extension that allows for multiple refer-
ences. We further plan to incorporate features
from the source sentence. We believe that our
framework can support learning similarities be-
tween the two translations and the source, for an
improved MT evaluation. Variations of this ar-
chitecture might be useful for related tasks such
as Quality Estimation and hypothesis re-ranking
for Machine Translation, where no references are
available.

Other aspects worth studying as a complement
to the present work include (i) the impact of the
quality of the syntactic analysis (translations are
often just a “word salad”), (ii) differences across
language pairs, and (iii) the relevance of the do-
main the semantic representations are trained on.

Kendall’s ⌧

System Details cz de es fr AVG

BLEU no learning 15.88 18.56 18.57 20.83 18.46
BLEUCOMP logistic regression 18.18 21.13 19.79 19.91 19.75
BLEUCOMP+SYNTAX25 multi-layer NN 20.75 25.32 24.85 23.88 23.70
BLEUCOMP+WIKI-GW25 multi-layer NN 22.96 26.63 25.99 24.10 24.92
BLEUCOMP+SYNTAX25+WIKI-GW25 multi-layer NN 22.84 28.92 27.95 24.90 26.15

BLEU+SYNTAX25+WIKI-GW25 multi-layer NN 20.03 25.95 27.07 23.16 24.05

Table 2: Kendall’s ⌧ on WMT12 for neural networks using BLEUCOMP, a decomposed version of BLEU. For comparison,
the last line shows a combination using BLEU instead of BLEUCOMP.

Source Alone Comb.

WIKI-GW25 10.01 29.70
WIKI-GW300 9.66 29.90

CC-300-42B 12.16 29.68
CC-300-840B 11.41 29.88

WORD2VEC300 7.72 29.13
COMPOSES400 12.35 28.54

Table 3: Average Kendall’s ⌧ on WMT12 for semantic vec-
tors trained on different text collections. Shown are results
(i) when using the semantic vectors alone, and (ii) when com-
bining them with 4METRICS and SYNTAX25. The improve-
ments over WIKI-GW25 are marked in bold.

As before, adding SYNTAX25 and WIKI-
GW25 improves the results, but now by a more
sizable margin: +4 for the former and +5 for the
latter. Adding both yields +6.5 improvement over
BLEUCOMP, and almost 8 points over BLEU.

We see once again that the syntactic and seman-
tic word embeddings are complementary to the in-
formation sources used by metrics such as BLEU,
and that our framework can learn from richer pair-
wise feature sets such as BLEUCOMP.

6.2 Larger Semantic Vectors

One interesting aspect to explore is the effect of
the dimensionality of the input embeddings. Here,
we studied the impact of using semantic vectors
of bigger sizes, trained on different and larger text
collections. The results are shown in Table 3.
We can see that, compared to the 50-dimensional
WIKI-GW25, 300-400 dimensional vectors are
generally better by 1-2 ⌧ points absolute when
used in isolation; however, when used in combina-
tion with 4METRICS+SYNTAX25, they do not of-
fer much gain (up to +0.2), and in some cases, we
observe a slight drop in performance. We suspect
that the variability across the different collections
is due to a domain mismatch. Yet, we defer this
question for future work.

Kendall’s ⌧

Details cz de es fr AVG

single-layer 25.86 32.06 30.03 28.45 29.10
multi-layer 26.30 33.19 30.38 28.92 29.70

Table 4: Kendall’s tau (⌧) on the WMT12 dataset for al-
ternative architectures using 4METRICS+SYNTAX25+WIKI-
GW25 as input.

6.3 Deep vs. Flat Neural Network

One interesting question is how much of the learn-
ing is due to the rich input representations, and
how much happens because of the architecture of
the neural network. To answer this, we exper-
imented with two settings: a single-layer neural
network, where all input features are fed directly
to the output layer (which is logistic regression),
and our proposed multi-layer neural network.

The results are shown in Table 4. We can see
that switching from our multi-layer architecture to
a single-layer one yields an absolute drop of 0.6
⌧ . This suggests that there is value in using the
deeper, pairwise layer architecture.

6.4 Task-Specific Cost Function

Another question is whether the log-likelihood
cost function J(✓) (see Section 3.3) is the most
appropriate for our ranking task, provided that it is
evaluated using Kendall’s ⌧ as defined below:

⌧ =

concord.� disc.� ties

concord+ disc.+ ties
(5)

where concord., disc. and ties are the number of
concordant, disconcordant and tied pairs.

Given an input tuple (t1, t2, r), the logistic cost
function yields larger values of � = f(t1, t2, r) if
y = 1, and smaller if y = 0, where 0  �  1 is
the parameter of the Bernoulli distribution. How-
ever, it does not model directly the probability
when the order of the hypotheses in the tuple is
reversed, i.e., �0

= f(t2, t1, r).

Kendall’s ⌧

System Details cz de es fr AVG

BLEU no learning 15.88 18.56 18.57 20.83 18.46
BLEUCOMP logistic regression 18.18 21.13 19.79 19.91 19.75
BLEUCOMP+SYNTAX25 multi-layer NN 20.75 25.32 24.85 23.88 23.70
BLEUCOMP+WIKI-GW25 multi-layer NN 22.96 26.63 25.99 24.10 24.92
BLEUCOMP+SYNTAX25+WIKI-GW25 multi-layer NN 22.84 28.92 27.95 24.90 26.15

BLEU+SYNTAX25+WIKI-GW25 multi-layer NN 20.03 25.95 27.07 23.16 24.05

Table 2: Kendall’s ⌧ on WMT12 for neural networks using BLEUCOMP, a decomposed version of BLEU. For comparison,
the last line shows a combination using BLEU instead of BLEUCOMP.

Source Alone Comb.

WIKI-GW25 10.01 29.70
WIKI-GW300 9.66 29.90

CC-300-42B 12.16 29.68
CC-300-840B 11.41 29.88

WORD2VEC300 7.72 29.13
COMPOSES400 12.35 28.54

Table 3: Average Kendall’s ⌧ on WMT12 for semantic vec-
tors trained on different text collections. Shown are results
(i) when using the semantic vectors alone, and (ii) when com-
bining them with 4METRICS and SYNTAX25. The improve-
ments over WIKI-GW25 are marked in bold.

As before, adding SYNTAX25 and WIKI-
GW25 improves the results, but now by a more
sizable margin: +4 for the former and +5 for the
latter. Adding both yields +6.5 improvement over
BLEUCOMP, and almost 8 points over BLEU.

We see once again that the syntactic and seman-
tic word embeddings are complementary to the in-
formation sources used by metrics such as BLEU,
and that our framework can learn from richer pair-
wise feature sets such as BLEUCOMP.

6.2 Larger Semantic Vectors

One interesting aspect to explore is the effect of
the dimensionality of the input embeddings. Here,
we studied the impact of using semantic vectors
of bigger sizes, trained on different and larger text
collections. The results are shown in Table 3.
We can see that, compared to the 50-dimensional
WIKI-GW25, 300-400 dimensional vectors are
generally better by 1-2 ⌧ points absolute when
used in isolation; however, when used in combina-
tion with 4METRICS+SYNTAX25, they do not of-
fer much gain (up to +0.2), and in some cases, we
observe a slight drop in performance. We suspect
that the variability across the different collections
is due to a domain mismatch. Yet, we defer this
question for future work.

Kendall’s ⌧

Details cz de es fr AVG

single-layer 25.86 32.06 30.03 28.45 29.10
multi-layer 26.30 33.19 30.38 28.92 29.70

Table 4: Kendall’s tau (⌧) on the WMT12 dataset for al-
ternative architectures using 4METRICS+SYNTAX25+WIKI-
GW25 as input.

6.3 Deep vs. Flat Neural Network

One interesting question is how much of the learn-
ing is due to the rich input representations, and
how much happens because of the architecture of
the neural network. To answer this, we exper-
imented with two settings: a single-layer neural
network, where all input features are fed directly
to the output layer (which is logistic regression),
and our proposed multi-layer neural network.

The results are shown in Table 4. We can see
that switching from our multi-layer architecture to
a single-layer one yields an absolute drop of 0.6
⌧ . This suggests that there is value in using the
deeper, pairwise layer architecture.

6.4 Task-Specific Cost Function

Another question is whether the log-likelihood
cost function J(✓) (see Section 3.3) is the most
appropriate for our ranking task, provided that it is
evaluated using Kendall’s ⌧ as defined below:

⌧ =

concord.� disc.� ties

concord+ disc.+ ties
(5)

where concord., disc. and ties are the number of
concordant, disconcordant and tied pairs.

Given an input tuple (t1, t2, r), the logistic cost
function yields larger values of � = f(t1, t2, r) if
y = 1, and smaller if y = 0, where 0  �  1 is
the parameter of the Bernoulli distribution. How-
ever, it does not model directly the probability
when the order of the hypotheses in the tuple is
reversed, i.e., �0

= f(t2, t1, r).

Kendall’s ⌧

System Details cz de es fr AVG

BLEU no learning 15.88 18.56 18.57 20.83 18.46
BLEUCOMP logistic regression 18.18 21.13 19.79 19.91 19.75
BLEUCOMP+SYNTAX25 multi-layer NN 20.75 25.32 24.85 23.88 23.70
BLEUCOMP+WIKI-GW25 multi-layer NN 22.96 26.63 25.99 24.10 24.92
BLEUCOMP+SYNTAX25+WIKI-GW25 multi-layer NN 22.84 28.92 27.95 24.90 26.15

BLEU+SYNTAX25+WIKI-GW25 multi-layer NN 20.03 25.95 27.07 23.16 24.05

Table 2: Kendall’s ⌧ on WMT12 for neural networks using BLEUCOMP, a decomposed version of BLEU. For comparison,
the last line shows a combination using BLEU instead of BLEUCOMP.

Source Alone Comb.

WIKI-GW25 10.01 29.70
WIKI-GW300 9.66 29.90

CC-300-42B 12.16 29.68
CC-300-840B 11.41 29.88

WORD2VEC300 7.72 29.13
COMPOSES400 12.35 28.54

Table 3: Average Kendall’s ⌧ on WMT12 for semantic vec-
tors trained on different text collections. Shown are results
(i) when using the semantic vectors alone, and (ii) when com-
bining them with 4METRICS and SYNTAX25. The improve-
ments over WIKI-GW25 are marked in bold.

As before, adding SYNTAX25 and WIKI-
GW25 improves the results, but now by a more
sizable margin: +4 for the former and +5 for the
latter. Adding both yields +6.5 improvement over
BLEUCOMP, and almost 8 points over BLEU.

We see once again that the syntactic and seman-
tic word embeddings are complementary to the in-
formation sources used by metrics such as BLEU,
and that our framework can learn from richer pair-
wise feature sets such as BLEUCOMP.

6.2 Larger Semantic Vectors

One interesting aspect to explore is the effect of
the dimensionality of the input embeddings. Here,
we studied the impact of using semantic vectors
of bigger sizes, trained on different and larger text
collections. The results are shown in Table 3.
We can see that, compared to the 50-dimensional
WIKI-GW25, 300-400 dimensional vectors are
generally better by 1-2 ⌧ points absolute when
used in isolation; however, when used in combina-
tion with 4METRICS+SYNTAX25, they do not of-
fer much gain (up to +0.2), and in some cases, we
observe a slight drop in performance. We suspect
that the variability across the different collections
is due to a domain mismatch. Yet, we defer this
question for future work.

Kendall’s ⌧

Details cz de es fr AVG

single-layer 25.86 32.06 30.03 28.45 29.10
multi-layer 26.30 33.19 30.38 28.92 29.70

Table 4: Kendall’s tau (⌧) on the WMT12 dataset for al-
ternative architectures using 4METRICS+SYNTAX25+WIKI-
GW25 as input.

6.3 Deep vs. Flat Neural Network

One interesting question is how much of the learn-
ing is due to the rich input representations, and
how much happens because of the architecture of
the neural network. To answer this, we exper-
imented with two settings: a single-layer neural
network, where all input features are fed directly
to the output layer (which is logistic regression),
and our proposed multi-layer neural network.

The results are shown in Table 4. We can see
that switching from our multi-layer architecture to
a single-layer one yields an absolute drop of 0.6
⌧ . This suggests that there is value in using the
deeper, pairwise layer architecture.

6.4 Task-Specific Cost Function

Another question is whether the log-likelihood
cost function J(✓) (see Section 3.3) is the most
appropriate for our ranking task, provided that it is
evaluated using Kendall’s ⌧ as defined below:

⌧ =

concord.� disc.� ties

concord+ disc.+ ties
(5)

where concord., disc. and ties are the number of
concordant, disconcordant and tied pairs.

Given an input tuple (t1, t2, r), the logistic cost
function yields larger values of � = f(t1, t2, r) if
y = 1, and smaller if y = 0, where 0  �  1 is
the parameter of the Bernoulli distribution. How-
ever, it does not model directly the probability
when the order of the hypotheses in the tuple is
reversed, i.e., �0

= f(t2, t1, r).
Neural Architecture

Translation 1

Translation 2

Reference

f(t1,t2,r)

ψ(t1,r) ψ(t2,r)h12

h1r

h2r

v
xt2

xr

xt1

t1

t2

r

sentences embeddings pairwise nodes pairwise features

output layer

Trained network

Train: WMT11 (11,160 pairs)

Test: WMT12 (3,798 pairs)

Dev: WMT13 (5,000 pairs)

Features were normalized using min-max

Logis'c											
Kendall	
Logis'c	+	Kendall	

29.70											
29.53	
29.92	

BLEU	
METEOR	
DiscoTK	
Kernel	Approach	

18.46	
23.56	
30.50	
23.70	

Lexical											
Lex+Syntax	
Lex+Seman'cs	
Lex+Syn+Seman'cs	

27.06											
28.51	
29.07	
29.70	

Deep vs. Flat NN	

Single-layer											
Mul'-layer	

29.10	
29.70	

BLEU											
BLEUCOMP	
				+SYN25	
				+GW25	
				+SYN25+GW25	

18.46											
19.75	
23.70	
24.92	
26.15	

Source	
GW25											
GW300	
CC-300-42B	
CC-300-840B	
Word2Vec300	
COMPOSES400	

Alone	
10.01											
9.66	
12.16	
11.41	
7.72	
12.35	

Comb.	
29.70											
29.90	
29.68	
29.88	
29.13	
28.54	

•  Learn to differentiate better from worse translations

•  State-of-the-art: structured input and preference-kernel
learning (Guzmán et al., EMNLP 2014)

•  Inspired by human ranking-based MT evaluation.
Evaluators compare pairs of hypotheses

Input: (Translation1, Translation2, Reference)

Question: Is T1 a better translation than T2, given R?

Experimental Setup

Results (Kendall Tau) Conclusion and Future Work

•  Proposed a novel NN framework for MT
evaluation:

§  Flexible in incorporating different
sources of information

§  Results are additive w.r.t. the sources of
information

§  Enables fast inference

§  Achieves state-of-the-art results

§  Add source-sentence information

§  Use the NN framework for:
§  re-ranking

§  quality estimation

§  system combination

•  Future work:	

The vector representations of the hypothesis
(i.e., xt1 or xt2) together with the reference
(i.e., xr) constitute the input to the hidden nodes
in these two groups. The third group of hidden
nodes h12, which we call similarity group, mod-
els how close t1 and t2 are. This might be useful
as highly similar hypotheses are likely to be com-
parable in quality, irrespective of whether they are
good or bad in absolute terms.

The input to each of these groups is repre-
sented by concatenating the vector representations
of the two components participating in the inter-
action, i.e., x1r = [xt1 ,xr], x2r = [xt2 ,xr],
x12 = [xt1 ,xt2]. In summary, the transformation
�(t1, t2, r) = [h12,h1r,h2r] in our NN architec-
ture can be written as follows:

h1r = g(W1rx1r + b1r)

h2r = g(W2rx2r + b2r)

h12 = g(W12x12 + b12)

where g(.) is a non-linear activation function (ap-
plied component-wise), W 2 RH⇥N are the asso-
ciated weights between the input layer and the hid-
den layer, and b are the corresponding bias terms.
In our experiments, we used tanh as an activation
function, rather than sig, to be consistent with how
parts of our input vectors were generated.3

In addition, our model allows to incorporate ex-
ternal sources of information by enabling skip arcs
that go directly from the input to the output, skip-
ping the hidden layer. In our setting, these arcs
represent pairwise similarity features between the
translation hypotheses and the reference (e.g., the
BLEU scores of the translations). We denote these
pairwise external feature sets as 1r = (t1, r)
and 2r = (t2, r). When we include the external
features in our architecture, the activation at the
output, i.e., eq. (3), can be rewritten as follows:

f(t1, t2, r) = sig(w

T
v [�(t1, t2, r), 1r, 2r] + bv)

3.3 Network Training

The negative log likelihood of the train-
ing data for the model parameters
✓ = (W12,W1r,W2r,wv,b12,b1r,b2r, bv)
can be written as follows:

J✓ = �
X

n

yn log ŷn✓ + (1� yn) log (1� ŷn✓)

(4)
3Many of our input representations consist of word em-

beddings trained with neural networks that used tanh as an
activation function.

In the above formula, ŷn✓ = fn(t1, t2, r) is
the activation at the output layer for the n-th
data instance. It is also common to use a reg-
ularized cost function by adding a weight decay
penalty (e.g., L2 or L1 regularization) and to per-
form maximum aposteriori (MAP) estimation of
the parameters. We trained our network with
stochastic gradient descent (SGD), mini-batches
and adagrad updates (Duchi et al., 2011), using
Theano (Bergstra et al., 2010).

4 Experimental Setup

In this section, we describe the different aspects
of our general experimental setup (we will discuss
some extensions thereof in Section 6), starting
with a description of the input representations we
use to capture the syntactic and semantic charac-
teristics of the two hypothesis translations and the
corresponding reference, as well as the datasets
used to evaluate the performance of our model.

4.1 Word Embedding Vectors

Word embeddings play a crucial role in our model,
since they allow us to model complex relations
between the translations and the reference using
syntactic and semantic vector representations.

Syntactic vectors. We generate a syntactic vector
for each sentence using the Stanford neural parser
(Socher et al., 2013a), which generates a 25-
dimensional vector as a by-product of syntactic
parsing using a recursive NN. Below we will refer
to these vectors as SYNTAX25.

Semantic vectors. We compose a semantic vector
for a given sentence using the average of the em-
bedding vectors for the words it contains (Mitchell
and Lapata, 2010). We use pre-trained, fixed-
length word embedding vectors produced by
(i) GloVe (Pennington et al., 2014), (ii) COM-
POSES (Baroni et al., 2014), and (iii) word2vec
(Mikolov et al., 2013b).

Our primary representation is based on 50-
dimensional GloVe vectors, trained on Wikipedia
2014+Gigaword 5 (6B tokens), to which below we
will refer as WIKI-GW25.

Furthermore, we experiment with WIKI-
GW300, the 300-dimensional GloVe vectors
trained on the same data, as well as with the CC-
300-42B and CC-300-840B, 300-dimensional
GloVe vectors trained on 42B and on 840B tokens
from Common Crawl.

The vector representations of the hypothesis
(i.e., xt1 or xt2) together with the reference
(i.e., xr) constitute the input to the hidden nodes
in these two groups. The third group of hidden
nodes h12, which we call similarity group, mod-
els how close t1 and t2 are. This might be useful
as highly similar hypotheses are likely to be com-
parable in quality, irrespective of whether they are
good or bad in absolute terms.

The input to each of these groups is repre-
sented by concatenating the vector representations
of the two components participating in the inter-
action, i.e., x1r = [xt1 ,xr], x2r = [xt2 ,xr],
x12 = [xt1 ,xt2]. In summary, the transformation
�(t1, t2, r) = [h12,h1r,h2r] in our NN architec-
ture can be written as follows:

h1r = g(W1rx1r + b1r)

h2r = g(W2rx2r + b2r)

h12 = g(W12x12 + b12)

where g(.) is a non-linear activation function (ap-
plied component-wise), W 2 RH⇥N are the asso-
ciated weights between the input layer and the hid-
den layer, and b are the corresponding bias terms.
In our experiments, we used tanh as an activation
function, rather than sig, to be consistent with how
parts of our input vectors were generated.3

In addition, our model allows to incorporate ex-
ternal sources of information by enabling skip arcs
that go directly from the input to the output, skip-
ping the hidden layer. In our setting, these arcs
represent pairwise similarity features between the
translation hypotheses and the reference (e.g., the
BLEU scores of the translations). We denote these
pairwise external feature sets as 1r = (t1, r)
and 2r = (t2, r). When we include the external
features in our architecture, the activation at the
output, i.e., eq. (3), can be rewritten as follows:

f(t1, t2, r) = sig(w

T
v [�(t1, t2, r), 1r, 2r] + bv)

3.3 Network Training

The negative log likelihood of the train-
ing data for the model parameters
✓ = (W12,W1r,W2r,wv,b12,b1r,b2r, bv)
can be written as follows:

J✓ = �
X

n

yn log ŷn✓ + (1� yn) log (1� ŷn✓)

(4)
3Many of our input representations consist of word em-

beddings trained with neural networks that used tanh as an
activation function.

In the above formula, ŷn✓ = fn(t1, t2, r) is
the activation at the output layer for the n-th
data instance. It is also common to use a reg-
ularized cost function by adding a weight decay
penalty (e.g., L2 or L1 regularization) and to per-
form maximum aposteriori (MAP) estimation of
the parameters. We trained our network with
stochastic gradient descent (SGD), mini-batches
and adagrad updates (Duchi et al., 2011), using
Theano (Bergstra et al., 2010).

4 Experimental Setup

In this section, we describe the different aspects
of our general experimental setup (we will discuss
some extensions thereof in Section 6), starting
with a description of the input representations we
use to capture the syntactic and semantic charac-
teristics of the two hypothesis translations and the
corresponding reference, as well as the datasets
used to evaluate the performance of our model.

4.1 Word Embedding Vectors

Word embeddings play a crucial role in our model,
since they allow us to model complex relations
between the translations and the reference using
syntactic and semantic vector representations.

Syntactic vectors. We generate a syntactic vector
for each sentence using the Stanford neural parser
(Socher et al., 2013a), which generates a 25-
dimensional vector as a by-product of syntactic
parsing using a recursive NN. Below we will refer
to these vectors as SYNTAX25.

Semantic vectors. We compose a semantic vector
for a given sentence using the average of the em-
bedding vectors for the words it contains (Mitchell
and Lapata, 2010). We use pre-trained, fixed-
length word embedding vectors produced by
(i) GloVe (Pennington et al., 2014), (ii) COM-
POSES (Baroni et al., 2014), and (iii) word2vec
(Mikolov et al., 2013b).

Our primary representation is based on 50-
dimensional GloVe vectors, trained on Wikipedia
2014+Gigaword 5 (6B tokens), to which below we
will refer as WIKI-GW25.

Furthermore, we experiment with WIKI-
GW300, the 300-dimensional GloVe vectors
trained on the same data, as well as with the CC-
300-42B and CC-300-840B, 300-dimensional
GloVe vectors trained on 42B and on 840B tokens
from Common Crawl.

