Unsupervised Modeling of Dialog Acts in Asynchronous Conversations

Shafiq Joty, Giuseppe Carenini University of British Columbia Vancouver, Canada.

Chin-Yew Lin MSRA Beijing, China.

Microsoft[®] Research

17-07-29

Asynchronous conversations and their dialog structure Participants collaborate at different times. - Emails, Blogs, Fora. Interaction is conversational. - Take turns. A turn: joint action of writing and reading. Perform comm. acts (dialog acts) like question, answer, request, accept. Dialog structure: dialog acts, dialogic structure (adjacency pairs).

From: Charles To: WAI AU Guidelines Date: Thu May Subj: Phone connection to ftof meeting.

It is probable that we can arrange a telephone connection, to call in via a US bridge. <Statement> Are there people who are unable to make the face to face meeting, but would like us to have this facility? <Yes-No Question>

From: William To: Charles Date: Thu May Subj: Re: Phone connection to ftof meeting.

>Are there people who are unable to make the face to face meeting, but would like us to have this facility?
At least one "people" would. <Accept Response>

From: Charles To: WAI AU Guidelines Date: Mon Jun Subj: RE: Phone connection to ftof meeting.

Please note the time zone difference, and if you intend to only be there for part of the time let us know
which part of the time. <Action Motivator>
9am - 5pm Amsterdam time is 3am - 11am US Eastern time which is midnight to 8am pacific time. <Statement>
Until now we have got 12 people who want to have a ptop connection. <Statement>
Cheers, <Polite>

Motivation of DA modeling

Important step towards conversation analysis.

- Useful applications (spoken dialog):
 - Artificial companions [Wilks 2006].
 - Task learning agents [Allen et al. 2007].
 - Meeting summarization [Murray et al. 2006].
 - Flirtation detection [Ranganath et al. 2009].
- We believe similar benefits will also hold for written asynchronous conversation.
- Abstractive summarization and visualization.

Challenges

Very little work in asynchronous domain.

In synchronous spoken domains (meetings, phone)

- Conversational flow is sequential.
- Supervised sequence labeler (HMM, MEMM, CRF).
- Applied to the temporal order.
- But, in asynchronous domains
 - Conversational flow is not sequential.
 - Should a model consider the sequence dependencies?
 - If yes, then how?
 - Two options: (a) temporal order, (b) graph-structural order.

Supervised setting becomes unrealistic.

- Number of new media grows
- New ways of communication.

Our approach

Unsupervised DA modeling:

 Find the DA clusters.
 Assign label to each cluster.

 First application to emails and fora.
 Generalize across domains.

Contributions Outline of the rest of the talk

Unsupervised DA Models

Deterministic graph-theoretic.
 Evaluation of graph-theoretic.
 Probabilistic conversational
 HMM.

HMM+Mix.

Evaluation of conv. models.

Data preparation
 Datasets
 Agreement
 Graph structural data

Datasets

12 DA tagset (MRDA)	Тад	Email	Forum
Test datasets:	Statement	69.56%	69.56%
 Email: 40 threads (BC3) (W3C) Ensures 200 threads (Tria Advisor) 	Polite	6.97%	6.97%
 Forum: 200 threads (TripAdvisor). Kappa (2 annotators): 0.79 (email) 	Yes-no ques.	6.75%	6.75%
	Action motiv.	6.09%	6.09%
– 0.73 (forum).	Wh-question	2.29%	2.29%
Train datasets:	Accept resp.	2.07%	2.07%
 Email: 23,957 threads (W3C). Forum: 25,000 threads (TripAdvisor). 	Open-end ques.	1.32%	1.32%
	Ack & appre	1.24%	1.24%
– Email: Yes.	Or-clause ques	1.10%	1.10%
– Forum: No.	Reject response	1.06%	1.06%
	Uncert. response	0.79%	0.79%
	Rhet. Question	0.75%	0.75%

Extracting conversational structure

Sequence dependencies in the conversational models:
 Temporal order.
 Graph-structural order.

Temporal order:
 Arranged based on the arrival time.

Graph-structural order:
 Find graph structure of the conversation.
 Derive the data from the structure.

Graph structure of emails

We analyze the actual body of the emails.
 We find two kinds of fragments:

- New fragment (depth level 0)
- Quoted fragment (depth level > 0)

• Example:

>Are there people who are unable to make the face to face meeting, but would like us to have this facility? (Quoted Fragment depth level 1) At least one "people" would. (New Fragment)

■We form a fragment quotation graph (FQG):

- Nodes represent fragments.
- Edges represent referential relations.

Graph structure for emails (FQG)

An email conversation with 6 emails.

Nodes

 Identify quoted and new fragments

Edges

Neighbouring quotations

17-07-29

Graph structure for TripAdvisor

Graph structure for TripAdvisor:

 No thread structure.
 Hardly quote.
 Almost always respond to the initial post.
 Mention names to respond to their post.

A post usually responds to the initial post unless it mentions other participants' names.

Contributions Outline of the rest of the talk

Data preparation

- Datasets
- Agreement
- Graph structural
 data

Unsuper. DA Models

Deterministic graph-theoretic.
 Evaluation of graph-theoretic.
 Probabilistic conversational
 HMM

HMM+Mix

Evaluation of conv. models.

Graph-based clustering

- Similar sentences should receive same DA tag.
- Form a complete similarity graph G= (V, E)
 - Nodes V represent the sentences.
 - Edge weights w (a,b) represent similarity.
- Formulate the clustering problem as a N-mincut graph-partitioning problem.
- Find optimal clusters using 'normalized cut' criteria (Shi & Malik, 2000).
- The edge weights can be assigned in various ways.

Similarity metrics as edge weights

- □ TF.IDF-based cosine similarity.
- TF.IDF-based cosine similarity with nouns masked.
- Word Subsequence Kernel (WSK).
- Extended WSK with POS (ESK-P).
- BE-based dependency similarity.
- Syntactic tree kernel (TK).

Evaluation of graph-theoretic clustering

Mean 1-to-1 accuracy:

Corpus	BOW	BOW-M	WSK	ESK-P	BE	ΤK	All	Baseline
Email	62.6	34.3	64.7	24.8	39.1	22.5	26.0	70.0
Forum	65.0	38.2	65.8	36.3	46.0	30.1	32.2	66.0

None can beat the baseline (majority class).

Limitations graph-theoretic model

Doesn't model sequential structure.

 e.g., "question" followed by "answer"

 Confused by topical clusters.
 Doesn't allow to incorporate other crucial conversational features (e.g., speaker, length, relative position) in a principled way.

HMM conversational model

D := Dialog Act, X = Feature vector

■ W_{ii} := word, S := Speaker, L := Length, P := Relative Position

Limitation of HMM conv. model

- Basically a content model. (Regina, 2004).
- Conversational features are also important to find topical clusters. (Joty et al, 2011).
- Without additional guidance it tends to find topical clusters in addition to DA cluster.
- Changing the data in an attempt to abstract away the topic words didn't work.
- We need the model to account for this.

HMM+Mix conversational model

D := Dialog Act, X = Feature vector, M = Mixture component
 W_{ii} := word, S := Speaker, L := Length, P := Relative Position

- Emission distribution is defined as a mixture model.
- Not only explain away the topics but also enrich the emission

Learning & Inference in the conversational models

Symmetric Dirichlet prior (alpha=2) over all multinomials.
 Deven Modelah (EM) with foreveal backwords (Open and the second second

- Baum-Welch (EM) with forward backwards. [See paper]
- EM initialization: Multiple (10) restarts.
- Viterbi decoding to infer the most probable sequence.

M1-M3M1-M2-M4

Use maximum vote for the duplicated sentences in the graphstructural order.

Experimental setup

Train on randomly selected 12,000 conversations (having at least two posts in each of them) for each corpus. Repeat this 50 times. Number of DAs available was set to 12. Number of mixture component M in HMM +Mix was empirically set to 3.

Evaluation of conversational models

	Email		Forum	
	Temporal	Graph	Temporal	Graph
Baseline	70.00	70.00	66.00	66.00
HMM	73.45	76.81	69.67	74.41
HMM+Mix	76.73	79.66	75.61	78.35

Models learn better sequential dependencies with the graph-structural order (p<0.05).</p>

HMM+Mix is a better conversational model (p<0.05).</p>

Bayesian versions of the conversational models.
Apply to other conversational modalities.
Try domain adaptation.

Thanks

Graph structure for TripAdvisor

Graph structure for TripAdvisor (MSRA):

 No thread structure.
 Hardly quote.
 Almost always respond to the initial post.
 Mention names to respond to their post.

 A post usually responds to the initial post unless it mentions other participants' names.

M1-M3M1-M2-M4

Evaluation Metric

- Compare model output with human DA annotation.
- Unsup. clustering doesn't assign any DA label.
 Metrics like kappa, F1 score are not applicable.
 We use 1-to-1 metric (Elsner & Charniak, ACL08).
- 1-to-1 measures the global similarity by pairing up the clusters of 2 annotations to maximize the total overlap.

1-to-1

17-07-29

17-07-29