Joint Multitask Learning for Community Question Answering Using Task-Specific Embeddings

Shafiq Joty Nanyang Technological University Lluís Màrquez Core Al-Barcelona Amazon

Preslav Nakov Qatar Computing Research Institute, HBKU

Community Question Answering (cQA)

• Questions specific to a region or a community are often answered in **community forums**.

Community Question Answering (cQA)

Residence Permit - Family/Documents/Procedure | Qatar ...

www.qatarliving.com > About Qatar > Visas and Permits Qatar Living Jun 13, 2012 - My family is here in **Doha** on **Visit visa** from last six months and **now** ... When i have to carry out the medical and finger printing? ... Once were back in **qatar** will her family visa be void as shes left the country and does not have an rp? ... Can I apply for Hotel Visa for my wife and daughter and bring them here ...

Family Visit Visa to Qatar | Qatar Living

www.qatarliving.com > About Qatar > Visas and Permits Qatar Living Family Visit Visa I want to get a family visa for my wife. of weeks and i need to bring my wife here either in visit or resident can u pls suggest me ... than one month you have to take exit permit for that person when he or she is leaving. (50QR @ ICC Doha) - tenancy contract, if engineer profession not required , because i ...

Qatar visa requirements - visit and residence visa for Doha ... www.onlineqatar.com/info/visa-requirements.aspx •

The current regulations are applicable to GCC residence permit holders. ... A tourist can get a visa on arrival at the entry points in the country or from Qatar's ... or if she arrives with the sponsor of one of the sponsor family members (wife or sons). ... while original passport has atleast six-month validity and they should have a ...

Qatar Visit Visa Information and Rules Doha Qatar www.onlineqatar.com/info/visit-visa-qatar.aspx -

Among the nationals who **can obtain visit visa** on arrival are Andorra, Australia, ... However, to **obtain** this **visa**, they should **have** a GCC **residence permit** and passport ... A single exit permit costs QR10, **while** the cost of multiple exit permit is ... pay to renew **visa** yearly to one guy he **will** not **now** in **qatar**. so i **take** already **my** ...

Community Question Answering (cQA)

An answer exists!

A Question-Comment Thread

Community Question Answering

Can I extend my family visit visa after 6 month?? Dear Members; I have my wife in gatar on family visit et more 2/3

visa; now it' Can I extend my family visit visa after 6 month??

Dear Members; I have my wife in gatar on family visit visa; now months visa? What Orm. is the procedure?? pls inform.

Community Question Answering

Research Challenges in cQA

A. q to a (answer goodness) [SemEval'15, SemEval'16]
B. q' to q (question-question similarity) [SemEval'16]
C. q' to a (answer selection; main task) [SemEval'16]

Inter-task Dependencies in cQA

- Task C is dependent on the other two tasks
- Task B can help solve C
- Task A can help solve C

Intra-task Dependencies in cQA

- Similar comments should have same class labels (for task A and task C)
- Similar questions should have same class labels (for task B)

Our Approach

- Step I: Learn task-specific embeddings for each task
- Step 2: Model intra- and inter-task dependencies.

Task-specific Representation for cQA

Train for each task separately

- Considers interactions between input elements
- Combines automatic and manually-designed features
- Does not consider inter- and intra-task dependencies

Inter- & Intra-task Dependencies for cQA

The model: $p(\mathbf{y}|\theta, \mathbf{x}) = \frac{1}{Z(\theta, \mathbf{x})} \prod_{t \in \tau} \left[\prod_{u \in V_t} \psi_n(y_u | \mathbf{x}, \mathbf{w}_n^t) \right] \prod_{(s,t) \in \tau \times \tau} \left[\prod_{(u,v) \in E_{st}} \psi_e(y_{uv} | \mathbf{x}, \mathbf{w}_e^{st}) \right]$

Training: RMSProp **Inference**: Loopy BP

Experimented with different graph structures

EMNLP-2018

Embeddings and Pairwise Features

- **Google skip-gram vectors:** 300-dimensions; embedding for a question/comment is the average of the word embeddings.
- **Syntax-based:** Parse the question (or comment) using the Stanford neural parser, and use the 25-dimensional vectors.
- **QL word2vec vectors:** Use fine-tuned word embeddings pretrained on all the available in-domain Qatar Living data.
- **Pairwise Features:** Cosine similarity, MT features (BLEU, NIST, TER, METEOR), BLEU components (n-gram prec, n-gram matches, length ratio, brevity penalty).
- **Node Features:** Comment features (different statistics on word types), meta features (same user answering, position as reciprocal rank).

cQA Datasets

SemEval-2016 Task 3 (Nakov et al., 2016)

- 387 new questions
- 6,959 related questions
- 56,988 answers

Main Results for Task B

Systems	MAP	AvgRec	MRR
UH-PRHLT (best at SE-2016)	76.70	90.31	83.02
DNN (task B network)	76.27	90.27	83.57
DNN + Gold A, C	77.17	90.71	84.73
DNN + Predicted A, C	76.43	90.34	83.62
DNN+CRF	76.87	90.66	84.44

- DNN model yields strong results; close to the best model in SemEval'16
- DNN+CRF yields further improvements and achieves state-of-the-art results

Main Results in Task C

Systems	MAP	AvgRec	MRR
SUper team (best at SE-2016)	55.41	60.66	61.48
DNN (task C network)	54.24	58.30	61.47
DNN + Gold A, B	63.49	71.16	68.19
DNN + Pred A, B	55.11	58.69	60.10
DNN-ABC (local)	54.32	59.87	61.76
DNN+CRF	56.0I	60.22	63.25

- DNN model gets strong results
- CRF yields state-of-the-art results improving over DNN by about 2 points

Conclusions & Future Work

- Feed-forward neural network to learn task-specific embeddings
- Joint multi-task learning framework with global normalization
- Improvements in both task B and task C

In future,

- Couple DNN and CRF for end-to-end training
- Better embeddings (ELMo, BERT)
- Evaluate on Semeval-2017 dataset

Thanks!

Questions?

EMNLP-2018

Multi-Task cQA Model

Feed-forward NN for cQA tasks & task-specific encoding

cQA Datasets

• SemEval-2016 Task 3 (Nakov et al., 2016)

Category	Train	Train	Train+Dev+Test	Dev	Test	Total
	(1st part)	(2nd part)	(from SemEval 2015)			
Original Questions	200	67	-	50	70	387
Related Questions	1,999	670	2,480+291+319	500	700	6,959
– Perfect Match	181	54	-	59	81	375
– Relevant	606	242	-	155	152	1,155
– Irrelevant	1,212	374	-	286	467	2,339
Related Comments	19,990	6,700	14,893+1,529+1,876	5,000	7,000	56,988
(with respect to Original Question)						
– Good	1,988	849	7,418+813+946	345	654	13,013
– Bad	16,319	5,154	5,971+544+774	4,061	5,943	38,766
– Potentially Useful	1,683	679	1,504+172+156	594	403	5,191
Related Comments	14,110	3,790	-	2,440	7,000	27,340
(with respect to Related Question)						
– Good	5,287	1,364	-	818	2,767	10,236
– Bad	6,362	1,777	-	1,209	3,090	12,438
– Potentially Useful	2,461	649	-	413	1,143	4,666

EMNLP-2018

DNN Results

Subtask A

System	MAP	AvgRec	MRR
Random order	52.80	66.52	58.71
Chronological order	59.53	72.60	67.83
ConvKN (second at SE-2016)	77.66	88.05	84.93
Kelp (best at SE-2016)	79.19	88.82	86.42
DNN _A (subtask A network)	76.20	86.52	84.95

Subtask C

System	MAP	AvgRec	MRR
Random order	15.01	11.44	15.19
IR+Chron. order	40.36	45.97	45.83
Kelp (second at SE-2016)	52.95	59.27	59.23
SUper team (best at SE-2016)	55.41	60.66	61.48
DNN_C (subtask C network)	54.24	58.30	61.47
DNN_C + A gold labels	61.14	66.67	66.86
DNN_C + B gold labels	56.29	61.11	62.67
DNN_C + A and B gold labels	63.49	71.16	68.19

Subtask B

System	MAP	AvgRec	MRR
Random order	46.98	67.92	50.96
IR order	74.75	88.30	83.79
ConvKN (second at SE-2016)	76.02	90.70	84.64
UH-PRHLT (best at SE-2016)	76.70	90.31	83.02
DNN_B (subtask B network)	76.27	90.27	83.57
$DNN_B + A$ gold labels	76.10	89.96	83.62
$DNN_B + C$ gold labels	77.19	90.78	83.73
$DNN_B + A$ and C gold labels	77.12	90.71	83.73

cQA Results

Subtask B Results

#	System	Comments	MAP	AvgRec	MRR	Acc	Р	R	F_1
1	DNN_B	Subtask B network	76.27	90.27	83.57	76.39	89.53	33.05	48.28
2	DNN_{B+PA}	DNN_B with A predicted labels	76.08	89.99	83.38	77.40	86.41	38.20	52.98
3	DNN_{B+PC}	DNN _{B} with C predicted labels	76.33	90.38	83.62	77.40	83.19	40.34	54.34
4	$DNN_{B+PA+PC}$	DNN_B with A and C predicted labels	76.43	90.34	83.62	77.11	78.74	42.92	55.56
5	CRF_{B^f}	CRF with fully connected B	76.41	90.34	83.81	77.00	84.62	37.76	52.23
6	$CRF_{ACBC,Bf}$	CRF _{ACBC} with fully connected B	76.89	90.87	84.19	77.86	76.00	48.93	59.53
7	$CRF_{ACBC,A^{f}B^{f}}$	CRF_{ACBC} with fully connected A and B	76.51	90.64	84.19	78.29	83.47	43.35	57.06
8	$CRF_{ACBC,B^{f}C^{f}}$	CRF_{ACBC} with fully connected B and C	76.87	90.96	84.44	77.86	78.68	45.92	58.00
9	$\operatorname{CRF}_{ACBC,f}$	CRF_{ACBC} with all layers fully connected	76.25	90.38	84.62	78.57	81.20	46.35	59.02

cQA Results

Subtask C Results

#	System	Comments	$MAP\left(\Delta\right)$	AvgRec (Δ)	$MRR(\Delta)$
1	DNN_C	Subtask C network	54.24	58.30	61.47
2	${{ m DNN}_{C+PA}}\ {{ m DNN}_{C+PB}}\ {{ m DNN}_{C+PA+PB}}$	DNN _C with A predicted labels	55.21 (+0.97)	58.36 (+0.06)	62.69 (+1.22)
3		DNN _C with B predicted labels	54.17 (-0.04)	58.17 (-0.13)	62.55 (+1.08)
4		DNN _C with A and B predicted labels	55.11 (+0.90)	58.69 (+0.39)	60.10 (-1.37)
5	${ m CRF}_{AC}$	CRF with A-C connections	55.42 (+1.18)	58.69 (+0.39)	63.25 (+1.78)
6	${ m CRF}_{BC}$	CRF with B-C connections	55.20 (+0.96)	58.87 (+0.57)	62.30 (+0.83)
7	${ m CRF}_{ACBC}$	CRF with A-C and B-C connections	56.00 (+1.76)	60.20 (+1.90)	63.25 (+1.78)
8	${ m CRF}_{all}$	CRF with all pairwise connections	55.81 (+1.57)	60.15 (+1.85)	62.68 (+1.21)
9	$\begin{array}{c} {\rm CRF}_{ACBC,Cf} \\ {\rm CRF}_{ACBC,A^fC^f} \\ {\rm CRF}_{ACBC,B^fC^f} \\ {\rm CRF}_{ACBC,f} \end{array}$	CRF_{ACBC} with fully connected C	55.73 (+1.49)	59.77 (+1.47)	62.80 (+1.33)
10		CRF_{ACBC} with fully connected A and C	55.54 (+1.30)	59.86 (+1.56)	62.54 (+1.07)
11		CRF_{ACBC} with fully connected B and C	55.67 (+1.43)	60.22 (+1.92)	62.80 (+1.33)
12		CRF_{ACBC} with all layers fully connected	55.81 (+1.57)	60.15 (+1.85)	63.25 (+1.78)