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Asynchronous Conversations 

•  Conversations where participants communicate with 
each other at different times. 
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•  Examples:	
  	
  
o  Emails	
  
o  Blogs	
  	
  
o  Forums	
  
o  TwiKer	
  
o  Facebook	
  



The Task: Speech Act Recognition in 
Asynchronous Conversations 
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C1	
  

My	
  son	
  wish	
  to	
  do	
  his	
  bachelor	
  degree	
  in	
  Mechanical	
  Engineering	
  in	
  an	
  
affordable	
  Canadian	
  university.	
  

The	
  info.	
  available	
  in	
  the	
  net	
  and	
  the	
  people	
  who	
  wish	
  to	
  offer	
  services	
  are	
  too	
  
many	
  and	
  some	
  are	
  misleading.	
  

The	
  preliminary	
  prepara?ons,eligibility,the	
  require	
  funds	
  etc.,	
  are	
  some	
  of	
  the	
  
issues	
  which	
  I	
  wish	
  to	
  know	
  from	
  any	
  panel	
  members	
  of	
  this	
  forum	
  who	
  …	
  

C2	
  
..	
  take	
  a	
  list	
  of	
  canadian	
  universi?es	
  and	
  then	
  create	
  a	
  table	
  and	
  insert	
  all	
  
the	
  relevant	
  info.	
  by	
  reading	
  each	
  and	
  every	
  program	
  info.	
  on	
  the	
  web.	
  

Without	
  doing	
  a	
  research	
  my	
  advice	
  would	
  be	
  to	
  apply	
  to	
  UVIC	
  ..	
  for	
  the	
  
following	
  reasons	
  ..	
  

snakyy21:	
  UVIC	
  is	
  a	
  short	
  form	
  of?	
  I	
  	
  have	
  already	
  started	
  researching	
  for	
  my	
  
brother	
  and	
  found	
  ``College	
  of	
  North	
  Atlan?c''	
  and	
  ..	
  

C3	
  

thank	
  you	
  for	
  sharing	
  useful	
  ?ps	
  	
  will	
  follow	
  your	
  advise.	
  C5	
  

..	
  

ST	
  

	
  Q	
  

	
  P	
  

ST	
  

SU	
  

SU	
  

	
  Q	
  



Contributions 

1)	
  Sentence	
  representa:on	
  
•  Exi:ng	
  methods	
  use	
  bag-­‐of-­‐ngrams	
  
•  Should	
  consider	
  sentence	
  structure	
  
•  Our	
  solu:on:	
  sequen:al	
  LSTM	
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2)	
  Conversa:onal	
  dependencies	
  	
  
•  Exi:ng	
  methods	
  usually	
  classify	
  each	
  sentence	
  locally	
  	
  
•  Should	
  consider	
  dependencies	
  inside	
  and	
  across	
  comments	
  
•  Our	
  solu:on:	
  structured	
  models	
  

3)	
  A	
  new	
  corpus	
  	
  
•  Forum	
  conversa:ons	
  
•  Annotated	
  with	
  standard	
  tagset	
  



Outline 
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•  Mo:va:on	
  
•  Our	
  Approach	
  

o  Sentence	
  representa:on	
  using	
  LSTMs	
  
o  Condi:onal	
  structured	
  models	
  

•  Corpora	
  
o  Exis:ng	
  datasets	
  
o  New	
  forum	
  corpus	
  

•  Experiments	
  &	
  Analysis	
  
o  Effec:veness	
  of	
  LSTM	
  RNNs	
  
o  Effec:veness	
  of	
  CRFs	
  

•  Conclusion	
  &	
  future	
  work	
  



Our Approach 
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Lookup	
  layer	
  

LSTM	
  layer	
  

s1	
  

Word	
  tokens	
  

s1	
  
1	
  

s2	
  
1	
   2	
  

Step	
  1:	
  LSTM	
  for	
  speech	
  act	
  classifica:on	
  &	
  sentence	
  encoding	
  

y1	
  1	
   y2	
  1	
   y1	
  2	
  
1	
  z2	
  1	
  z1	
   2	
  z1	
  1	
  z1	
   1	
  z2	
   2	
  z1	
  

•  Considers	
  word	
  order	
  in	
  a	
  sentence	
  
•  Does	
  not	
  consider	
  the	
  interdependencies	
  between	
  sentences.	
  



Our Approach 
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Step	
  2:	
  Conversa:onal	
  dependencies	
  with	
  structured	
  models	
  	
  	
  

y1	
  1	
   y2	
  
1	
  

y1	
  2	
  

1	
  z2	
  

1	
  z1	
  
2	
  z1	
  

1	
  z1	
  

1	
  z2	
  

2	
  z1	
  

Fully-­‐connected	
  graph	
  

•  Experimented	
  with	
  various	
  graph	
  structures	
  



 Conditional Structured Model 

8	
  

zi	
  
zk	
  

zj	
  yi	
  
yk	
  

yj	
  

where
�!
hT and

 �
hT are the encoded vectors summa-

rizing the past and the future, respectively.

2.2 Conditional Structured Model
Given the vector representation of the sentences in
an asynchronous conversation, we explore two dif-
ferent approaches to learn classification functions.
The first and the traditional approach is to learn
a local classifier ignoring the structure in the out-
put and to use it for predicting the label of each
sentence separately. This is the approach we took
above when we fed the output layer of the LSTM
RNN with the sentence-level embeddings. How-
ever, this approach does not model the conversa-
tional dependency (e.g., adjacency relations be-
tween question-answer and request-accept pairs).

The second approach, which we adopt in this
paper, is to model the dependencies between the
output variables (labels) while learning the clas-
sification functions jointly by optimizing a global
performance criterion. We represent each conver-
sation by a graph G=(V,E). Each node i2V is
associated with an input vector zi = z

n
m, repre-

senting the features of the sentence snm, and an out-
put variable yi2{1, 2, · · · ,K}, representing the
class label. Similarly, each edge (i, j)2E is as-
sociated with an input feature vector �(zi, zj), de-
rived from the node-level features, and an output
variable yi,j2{1, 2, · · · , L}, representing the state
transitions for the pair of nodes. We define the fol-
lowing conditional joint distribution:

p(y|v,w, z) =
1

Z(v,w, z)

Y

i2V

 
n

(y
i

|z,v)

Y

(i,j)2E

 
e

(y
i,j

|z,w) (7)

where  n and  e are node and the edge factors,
and Z(.) is the global normalization constant that
ensures a valid probability distribution. We use a
log-linear representation for the factors:
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e
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|z,w) = exp(w
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where �(.) is a feature vector derived from the in-
puts and the labels. This model is essentially a
pairwise conditional random field or PCRF (Mur-
phy, 2012). The global normalization allows CRFs
to surmount the so-called label bias problem (Laf-
ferty et al., 2001), allowing them to take long-
range interactions into account. The log likelihood
for one data point (z,y) (i.e., a conversation) is:

f(✓) =
X

i2V

v

T�(y
i

, z) +
X

(i,j)2E

w

T�(y
i,j

, z)

� logZ(v,w, z) (10)

This objective is convex, so we can use gradient-
based methods to find the global optimum. The
gradients have the following form:

f 0
(v) =

X

i2V

�(y
i

, z)� E[�(y
i

, z)] (11)

f 0
(w) =

X

(i,j)2E

�(y
i,j

, z)� E[�(y
i,j

, z)] (12)

where E[�(.)] denote the expected feature vector.

Training and Inference Traditionally, CRFs
have been trained using offline methods like
limited-memory BFGS (Murphy, 2012). Online
training of CRFs using stochastic gradient de-
scent (SGD) was proposed by Vishwanathan et al.
(2006). Since RNNs are trained with online meth-
ods, to compare our two methods, we use SGD
to train our CRFs. Algorithm 1 in the Appendix
gives a pseudocode of the training procedure.

We use Belief Propagation or BP (Pearl, 1988)
for inference in our graphical models. BP is guar-
anteed to converge to an exact solution if the graph
is a tree. However, exact inference is intractable
for graphs with loops. Despite this, it has been ad-
vocated by Pearl (1988) to use BP in loopy graphs
as an approximation; see also (Murphy, 2012),
page 768. The algorithm is then called “loopy”
BP, or LBP. Although LBP gives approximate so-
lutions for general graphs, it often works well
in practice (Murphy et al., 1999), outperforming
other methods such as mean field (Weiss, 2001).

Variations of Graph Structures One of the
main advantages of our pairwise CRF is that
we can define this model over arbitrary graph
structures, which allows us to capture conver-
sational dependencies at various levels. We
distinguish between two types of dependencies:
(i) intra-comment, which defines how the labels
of the sentences in a comment are connected; and
(ii) across-comment, which defines how the labels
of the sentences across comments are connected.

Table 1 summarizes the connection types that
we have explored in our models. Each configu-
ration of intra- and across- connections yields a
different pairwise CRF model. Figure 3 shows
four such CRFs with three comments — C1 be-
ing the first comment, and Ci and Cj being two
other comments in the conversation.
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lowing conditional joint distribution:
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where  n and  e are node and the edge factors,
and Z(.) is the global normalization constant that
ensures a valid probability distribution. We use a
log-linear representation for the factors:
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where �(.) is a feature vector derived from the in-
puts and the labels. This model is essentially a
pairwise conditional random field or PCRF (Mur-
phy, 2012). The global normalization allows CRFs
to surmount the so-called label bias problem (Laf-
ferty et al., 2001), allowing them to take long-
range interactions into account. The log likelihood
for one data point (z,y) (i.e., a conversation) is:
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This objective is convex, so we can use gradient-
based methods to find the global optimum. The
gradients have the following form:
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where E[�(.)] denote the expected feature vector.

Training and Inference Traditionally, CRFs
have been trained using offline methods like
limited-memory BFGS (Murphy, 2012). Online
training of CRFs using stochastic gradient de-
scent (SGD) was proposed by Vishwanathan et al.
(2006). Since RNNs are trained with online meth-
ods, to compare our two methods, we use SGD
to train our CRFs. Algorithm 1 in the Appendix
gives a pseudocode of the training procedure.

We use Belief Propagation or BP (Pearl, 1988)
for inference in our graphical models. BP is guar-
anteed to converge to an exact solution if the graph
is a tree. However, exact inference is intractable
for graphs with loops. Despite this, it has been ad-
vocated by Pearl (1988) to use BP in loopy graphs
as an approximation; see also (Murphy, 2012),
page 768. The algorithm is then called “loopy”
BP, or LBP. Although LBP gives approximate so-
lutions for general graphs, it often works well
in practice (Murphy et al., 1999), outperforming
other methods such as mean field (Weiss, 2001).

Variations of Graph Structures One of the
main advantages of our pairwise CRF is that
we can define this model over arbitrary graph
structures, which allows us to capture conver-
sational dependencies at various levels. We
distinguish between two types of dependencies:
(i) intra-comment, which defines how the labels
of the sentences in a comment are connected; and
(ii) across-comment, which defines how the labels
of the sentences across comments are connected.

Table 1 summarizes the connection types that
we have explored in our models. Each configu-
ration of intra- and across- connections yields a
different pairwise CRF model. Figure 3 shows
four such CRFs with three comments — C1 be-
ing the first comment, and Ci and Cj being two
other comments in the conversation.
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we can define this model over arbitrary graph
structures, which allows us to capture conver-
sational dependencies at various levels. We
distinguish between two types of dependencies:
(i) intra-comment, which defines how the labels
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(ii) across-comment, which defines how the labels
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Tag Connection type Applicable to

NO No connection between nodes intra & across
LC Linear chain connection intra & across
FC Fully connected intra & across
FC1 Fully connected with first comment only across
LC1 Linear chain with first comment only across

Table 1: Connection types in CRF models.

(a) NO-NO (MaxEnt) (b) LC-LC

(c) LC-LC1 (d) LC-FC1

Figure 3: CRFs over different graph structures.

Figure 3a shows the structure for NO-NO con-
figuration, where there is no link between nodes of
both intra- and across- comments. In this setting,
the CRF model is equivalent to MaxEnt. Figure
3b shows the structure for LC-LC, where there
are linear chain relations between nodes of both
intra- and across- comments. The linear chain
across comments refers to the structure, where
the last sentence of each comment is connected
to the first sentence of the comment that comes
next in the temporal order (i.e., posting time). Fig-
ures 3c shows the CRF for LC-LC1, where sen-
tences inside a comment have linear chain connec-
tions, and the last sentence of the first comment is
connected to the first sentence of the other com-
ments. Similarly, Figure 3d shows the graph struc-
ture for LC-FC1 configuration, where sentences
inside comments have linear chain connections,
and sentences of the first comment are fully con-
nected with the sentences of the other comments.

3 Corpora

There exist large corpora of utterances annotated
with speech acts in synchronous spoken domains,
e.g., Switchboard-DAMSL or SWBD (Jurafsky et
al., 1997) and Meeting Recorder Dialog Act or
MRDA (Dhillon et al., 2004). However, such large
corpus does not exist in asynchronous domains.
Some prior work (Cohen et al., 2004; Ravi and
Kim, 2007; Feng et al., 2006; Bhatia et al., 2014)
tackles the task at the comment level, and uses

TA BC3
Total number of conv. 200 39
Avg. nb of comments per conv. 4.02 6.54
Avg. nb of sentences per conv. 18.56 34.15
Avg. nb of words per sentence 14.90 12.61

Table 2: Statistics about TA and BC3 corpora.

Tag Description TA BC3 MRDA
SU Suggestion 7.71% 5.48% 5.97%
R Response 2.4% 3.75% 15.63%
Q Question 14.71% 8.41% 8.62%
P Polite 9.57% 8.63% 3.77%
ST Statement 65.62% 73.72% 66.00%

Table 3: Distribution of speech acts in our corpora.

task-specific tagsets. In contrast, in this work we
are interested in identifying speech acts at the sen-
tence level, and also using a standard tagset like
the ones defined in SWBD and MRDA.

More recent studies attempt to solve the task at
the sentence level. Jeong et al. (2009) first created
a dataset of TripAdvisor (TA) forum conversations
annotated with the standard 12 act types defined in
MRDA. They also remapped the BC3 email cor-
pus (Ulrich et al., 2008) according to this tagset.
Table 10 in the Appendix presents the tags and
their relative frequency in the two datasets. Subse-
quent studies (Joty et al., 2011; Tavafi et al., 2013;
Oya and Carenini, 2014) use these datasets. We
also use these datasets in our work. Table 2 shows
some basic statistics about these datasets. On aver-
age, BC3 conversations are longer than TA in both
number of comments and number of sentences.

Since these datasets are relatively small in size,
we group the 12 acts into 5 coarser classes to
learn a reasonable classifier.1 More specifically,
all the question types are grouped into one gen-
eral class Question, all response types into Re-
sponse, and appreciation and polite mechanisms
into Polite class. Also since deep neural models
like LSTM RNNs require a lot of training data,
we also utilize the MRDA meeting corpus. Ta-
ble 3 shows the label distribution of the resultant
datasets. Statement is the most dominant class,
followed by Question, Polite and Suggestion.

QC3 Conversational Corpus Since both TA
and BC3 are quite small to make a general com-
ment about model performance in asynchronous

1Some prior work (Tavafi et al., 2013; Oya and Carenini,
2014) also took the same approach.
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datasets. Statement is the most dominant class,
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to the first sentence of the comment that comes
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ures 3c shows the CRF for LC-LC1, where sen-
tences inside a comment have linear chain connec-
tions, and the last sentence of the first comment is
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and sentences of the first comment are fully con-
nected with the sentences of the other comments.

3 Corpora

There exist large corpora of utterances annotated
with speech acts in synchronous spoken domains,
e.g., Switchboard-DAMSL or SWBD (Jurafsky et
al., 1997) and Meeting Recorder Dialog Act or
MRDA (Dhillon et al., 2004). However, such large
corpus does not exist in asynchronous domains.
Some prior work (Cohen et al., 2004; Ravi and
Kim, 2007; Feng et al., 2006; Bhatia et al., 2014)
tackles the task at the comment level, and uses

TA BC3
Total number of conv. 200 39
Avg. nb of comments per conv. 4.02 6.54
Avg. nb of sentences per conv. 18.56 34.15
Avg. nb of words per sentence 14.90 12.61

Table 2: Statistics about TA and BC3 corpora.

Tag Description TA BC3 MRDA
SU Suggestion 7.71% 5.48% 5.97%
R Response 2.4% 3.75% 15.63%
Q Question 14.71% 8.41% 8.62%
P Polite 9.57% 8.63% 3.77%
ST Statement 65.62% 73.72% 66.00%

Table 3: Distribution of speech acts in our corpora.

task-specific tagsets. In contrast, in this work we
are interested in identifying speech acts at the sen-
tence level, and also using a standard tagset like
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More recent studies attempt to solve the task at
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number of comments and number of sentences.
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we group the 12 acts into 5 coarser classes to
learn a reasonable classifier.1 More specifically,
all the question types are grouped into one gen-
eral class Question, all response types into Re-
sponse, and appreciation and polite mechanisms
into Polite class. Also since deep neural models
like LSTM RNNs require a lot of training data,
we also utilize the MRDA meeting corpus. Ta-
ble 3 shows the label distribution of the resultant
datasets. Statement is the most dominant class,
followed by Question, Polite and Suggestion.
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2014) also took the same approach.
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Figure 3: CRFs over different graph structures.

Figure 3a shows the structure for NO-NO con-
figuration, where there is no link between nodes of
both intra- and across- comments. In this setting,
the CRF model is equivalent to MaxEnt. Figure
3b shows the structure for LC-LC, where there
are linear chain relations between nodes of both
intra- and across- comments. The linear chain
across comments refers to the structure, where
the last sentence of each comment is connected
to the first sentence of the comment that comes
next in the temporal order (i.e., posting time). Fig-
ures 3c shows the CRF for LC-LC1, where sen-
tences inside a comment have linear chain connec-
tions, and the last sentence of the first comment is
connected to the first sentence of the other com-
ments. Similarly, Figure 3d shows the graph struc-
ture for LC-FC1 configuration, where sentences
inside comments have linear chain connections,
and sentences of the first comment are fully con-
nected with the sentences of the other comments.

3 Corpora

There exist large corpora of utterances annotated
with speech acts in synchronous spoken domains,
e.g., Switchboard-DAMSL or SWBD (Jurafsky et
al., 1997) and Meeting Recorder Dialog Act or
MRDA (Dhillon et al., 2004). However, such large
corpus does not exist in asynchronous domains.
Some prior work (Cohen et al., 2004; Ravi and
Kim, 2007; Feng et al., 2006; Bhatia et al., 2014)
tackles the task at the comment level, and uses

TA BC3
Total number of conv. 200 39
Avg. nb of comments per conv. 4.02 6.54
Avg. nb of sentences per conv. 18.56 34.15
Avg. nb of words per sentence 14.90 12.61

Table 2: Statistics about TA and BC3 corpora.

Tag Description TA BC3 MRDA
SU Suggestion 7.71% 5.48% 5.97%
R Response 2.4% 3.75% 15.63%
Q Question 14.71% 8.41% 8.62%
P Polite 9.57% 8.63% 3.77%
ST Statement 65.62% 73.72% 66.00%

Table 3: Distribution of speech acts in our corpora.

task-specific tagsets. In contrast, in this work we
are interested in identifying speech acts at the sen-
tence level, and also using a standard tagset like
the ones defined in SWBD and MRDA.

More recent studies attempt to solve the task at
the sentence level. Jeong et al. (2009) first created
a dataset of TripAdvisor (TA) forum conversations
annotated with the standard 12 act types defined in
MRDA. They also remapped the BC3 email cor-
pus (Ulrich et al., 2008) according to this tagset.
Table 11 in the Appendix presents the tags and
their relative frequency in the two datasets. Subse-
quent studies (Joty et al., 2011; Tavafi et al., 2013;
Oya and Carenini, 2014) use these datasets. We
also use these datasets in our work. Table 4 shows
some basic statistics about these datasets. On aver-
age, BC3 conversations are longer than TA in both
number of comments and number of sentences.

Since these datasets are relatively small in size,
we group the 12 acts into 5 coarser classes to
learn a reasonable classifier.1 More specifically,
all the question types are grouped into one gen-
eral class Question, all response types into Re-
sponse, and appreciation and polite mechanisms
into Polite class. Also since deep neural models
like LSTM RNNs require a lot of training data,
we also utilize the MRDA meeting corpus. Ta-
ble 3 shows the label distribution of the resultant
datasets. Statement is the most dominant class,
followed by Question, Polite and Suggestion.

QC3 Conversational Corpus Since both TA
and BC3 are quite small to make a general com-
ment about model performance in asynchronous

1Some prior work (Tavafi et al., 2013; Oya and Carenini,
2014) also took the same approach.



 Training & Inference in CRFs 

16-­‐08-­‐09	
   ACL-­‐2016	
   11	
  

•  Online	
  learning	
  (SGD)	
  

•  Inference:	
  Loopy	
  belief	
  	
  
	
  	
  	
  	
  propaga:on	
  (Pearl,	
  1988)	
  

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013b. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in Neural Information Processing
Systems, pages 3111–3119.

Kevin P. Murphy, Yair Weiss, and Michael I. Jordan.
1999. Loopy belief propagation for approximate
inference: An empirical study. In Proceedings of
the Fifteenth Conference on Uncertainty in Artificial
Intelligence, UAI’99, pages 467–475, Stockholm,
Sweden. Morgan Kaufmann Publishers Inc.

Kevin Murphy. 2012. Machine Learning A Probabilis-
tic Perspective. The MIT Press.

Tatsuro Oya and Giuseppe Carenini. 2014. Extrac-
tive summarization and dialogue act modeling on
email threads: An integrated probabilistic approach.
In Proceedings of the 15th Annual Meeting of the
Special Interest Group on Discourse and Dialogue
(SIGDIAL), page 133–140, Philadelphia, PA, U.S.A.
ACL.
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A Appendix

Algorithm 1: Online learning algorithm for
conditional random fields

1. Initialize the model parameters v and w;
2. repeat

for each thread G = (V,E) do
a. Compute node and edge factors
 n(yi|z,v) and  e(yi,j |z,w);
b. Infer node and edge marginals
using sum-product loopy BP;
c. Update: v = v � ⌘

1
|V |f

0(v);
d. Update: w = w � ⌘

1
|E|f

0(w) ;
end

until convergence;

Tag Description BC3 TA
S Statement 69.56% 65.62%
P Polite mechanism 6.97% 9.11%
QY Yes-no question 6.75% 8.33%
AM Action motivator 6.09% 7.71%
QW Wh-question 2.29% 4.23%
A Accept response 2.07% 1.10%
QO Open-ended question 1.32% 0.92%
AA Acknowledge and appreciate 1.24% 0.46%
QR Or/or-clause question 1.10% 1.16%
R Reject response 1.06% 0.64%
U Uncertain response 0.79% 0.65%
QH Rhetorical question 0.75% 0.08%

Table 10: Dialog act tags and their relative fre-
quencies in the BC3 and TA corpora.
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Tag Connection type Applicable to

NO No connection between nodes intra & across
LC Linear chain connection intra & across
FC Fully connected intra & across
FC1 Fully connected with first comment only across
LC1 Linear chain with first comment only across

Table 1: Connection types in CRF models.

(a) NO-NO (MaxEnt) (b) LC-LC

(c) LC-LC1 (d) LC-FC1

Figure 3: CRFs over different graph structures.

Figure 3a shows the structure for NO-NO con-
figuration, where there is no link between nodes of
both intra- and across- comments. In this setting,
the CRF model is equivalent to MaxEnt. Figure
3b shows the structure for LC-LC, where there
are linear chain relations between nodes of both
intra- and across- comments. The linear chain
across comments refers to the structure, where
the last sentence of each comment is connected
to the first sentence of the comment that comes
next in the temporal order (i.e., posting time). Fig-
ures 3c shows the CRF for LC-LC1, where sen-
tences inside a comment have linear chain connec-
tions, and the last sentence of the first comment is
connected to the first sentence of the other com-
ments. Similarly, Figure 3d shows the graph struc-
ture for LC-FC1 configuration, where sentences
inside comments have linear chain connections,
and sentences of the first comment are fully con-
nected with the sentences of the other comments.

3 Corpora

There exist large corpora of utterances annotated
with speech acts in synchronous spoken domains,
e.g., Switchboard-DAMSL or SWBD (Jurafsky et
al., 1997) and Meeting Recorder Dialog Act or
MRDA (Dhillon et al., 2004). However, such large
corpus does not exist in asynchronous domains.
Some prior work (Cohen et al., 2004; Ravi and
Kim, 2007; Feng et al., 2006; Bhatia et al., 2014)
tackles the task at the comment level, and uses

TA BC3
Total number of conv. 200 39
Avg. nb of comments per conv. 4.02 6.54
Avg. nb of sentences per conv. 18.56 34.15
Avg. nb of words per sentence 14.90 12.61

Table 2: Statistics about TA and BC3 corpora.

Tag Description TA BC3 MRDA
SU Suggestion 7.71% 5.48% 5.97%
R Response 2.4% 3.75% 15.63%
Q Question 14.71% 8.41% 8.62%
P Polite 9.57% 8.63% 3.77%
ST Statement 65.62% 73.72% 66.00%

Table 3: Distribution of speech acts in our corpora.

task-specific tagsets. In contrast, in this work we
are interested in identifying speech acts at the sen-
tence level, and also using a standard tagset like
the ones defined in SWBD and MRDA.

More recent studies attempt to solve the task at
the sentence level. Jeong et al. (2009) first created
a dataset of TripAdvisor (TA) forum conversations
annotated with the standard 12 act types defined in
MRDA. They also remapped the BC3 email cor-
pus (Ulrich et al., 2008) according to this tagset.
Table 10 in the Appendix presents the tags and
their relative frequency in the two datasets. Subse-
quent studies (Joty et al., 2011; Tavafi et al., 2013;
Oya and Carenini, 2014) use these datasets. We
also use these datasets in our work. Table 2 shows
some basic statistics about these datasets. On aver-
age, BC3 conversations are longer than TA in both
number of comments and number of sentences.

Since these datasets are relatively small in size,
we group the 12 acts into 5 coarser classes to
learn a reasonable classifier.1 More specifically,
all the question types are grouped into one gen-
eral class Question, all response types into Re-
sponse, and appreciation and polite mechanisms
into Polite class. Also since deep neural models
like LSTM RNNs require a lot of training data,
we also utilize the MRDA meeting corpus. Ta-
ble 3 shows the label distribution of the resultant
datasets. Statement is the most dominant class,
followed by Question, Polite and Suggestion.

QC3 Conversational Corpus Since both TA
and BC3 are quite small to make a general com-
ment about model performance in asynchronous

1Some prior work (Tavafi et al., 2013; Oya and Carenini,
2014) also took the same approach.
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(a) NO-NO (MaxEnt) (b) LC-LC
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Figure 3: CRFs over different graph structures.

Figure 3a shows the structure for NO-NO con-
figuration, where there is no link between nodes of
both intra- and across- comments. In this setting,
the CRF model is equivalent to MaxEnt. Figure
3b shows the structure for LC-LC, where there
are linear chain relations between nodes of both
intra- and across- comments. The linear chain
across comments refers to the structure, where
the last sentence of each comment is connected
to the first sentence of the comment that comes
next in the temporal order (i.e., posting time). Fig-
ures 3c shows the CRF for LC-LC1, where sen-
tences inside a comment have linear chain connec-
tions, and the last sentence of the first comment is
connected to the first sentence of the other com-
ments. Similarly, Figure 3d shows the graph struc-
ture for LC-FC1 configuration, where sentences
inside comments have linear chain connections,
and sentences of the first comment are fully con-
nected with the sentences of the other comments.

3 Corpora

There exist large corpora of utterances annotated
with speech acts in synchronous spoken domains,
e.g., Switchboard-DAMSL or SWBD (Jurafsky et
al., 1997) and Meeting Recorder Dialog Act or
MRDA (Dhillon et al., 2004). However, such large
corpus does not exist in asynchronous domains.
Some prior work (Cohen et al., 2004; Ravi and
Kim, 2007; Feng et al., 2006; Bhatia et al., 2014)
tackles the task at the comment level, and uses

TA BC3
Total number of conv. 200 39
Avg. nb of comments per conv. 4.02 6.54
Avg. nb of sentences per conv. 18.56 34.15
Avg. nb of words per sentence 14.90 12.61

Table 2: Statistics about TA and BC3 corpora.

Tag Description TA BC3 MRDA
SU Suggestion 7.71% 5.48% 5.97%
R Response 2.4% 3.75% 15.63%
Q Question 14.71% 8.41% 8.62%
P Polite 9.57% 8.63% 3.77%
ST Statement 65.62% 73.72% 66.00%

Table 3: Distribution of speech acts in our corpora.

task-specific tagsets. In contrast, in this work we
are interested in identifying speech acts at the sen-
tence level, and also using a standard tagset like
the ones defined in SWBD and MRDA.

More recent studies attempt to solve the task at
the sentence level. Jeong et al. (2009) first created
a dataset of TripAdvisor (TA) forum conversations
annotated with the standard 12 act types defined in
MRDA. They also remapped the BC3 email cor-
pus (Ulrich et al., 2008) according to this tagset.
Table 10 in the Appendix presents the tags and
their relative frequency in the two datasets. Subse-
quent studies (Joty et al., 2011; Tavafi et al., 2013;
Oya and Carenini, 2014) use these datasets. We
also use these datasets in our work. Table 2 shows
some basic statistics about these datasets. On aver-
age, BC3 conversations are longer than TA in both
number of comments and number of sentences.

Since these datasets are relatively small in size,
we group the 12 acts into 5 coarser classes to
learn a reasonable classifier.1 More specifically,
all the question types are grouped into one gen-
eral class Question, all response types into Re-
sponse, and appreciation and polite mechanisms
into Polite class. Also since deep neural models
like LSTM RNNs require a lot of training data,
we also utilize the MRDA meeting corpus. Ta-
ble 3 shows the label distribution of the resultant
datasets. Statement is the most dominant class,
followed by Question, Polite and Suggestion.

QC3 Conversational Corpus Since both TA
and BC3 are quite small to make a general com-
ment about model performance in asynchronous

1Some prior work (Tavafi et al., 2013; Oya and Carenini,
2014) also took the same approach.
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Speech Act Distribution 

Suggestion 17.38% 0.86
Response 5.24% 0.43
Question 12.59% 0.87
Polite 6.13% 0.75
Statement 58.66% 0.78

Table 4: Corpus statistics for QC3.

conversation, we have created a new dataset called
Qatar Computing Conversational Corpus or QC3.

We selected 50 conversations from a popular
community question answering site named Qatar
Living2 for our annotation. We used 3 conversa-
tions for our pilot study and used the remaining 47
for the actual study. The resultant corpus on aver-
age contains 13.32 comments and 33.28 sentences
per conversation, and 19.78 words per sentence.

Two native speakers of English annotated each
conversation using a web-based annotation frame-
work. They were asked to annotate each sentence
with the most appropriate speech act tag from the
list of 5 speech act types. Since this task is not
always obvious, we gave them detailed annota-
tion guidelines with real examples. We use Co-
hens Kappa  to measure the agreement between
the annotators. Table 4 presents the distribution of
the speech acts and their respective  values.After
Statement, Suggestion is the most frequent class,
followed by Question and Polite. The  varies
from 0.43 (for Response) to 0.87 (for Question).

Finally, in order to create a consolidated dataset,
we collected the disagreements and employed a
third annotator to resolve those cases.

4 Experiments and Analysis

In this section we present our experimental set-
tings, results and analysis. We evaluate our mod-
els on the two forum corpora QC3 and TA. For
performance comparison, we use both accuracy
and macro-averaged F1 score. Accuracy gives the
overall performance of a classifier but could be bi-
ased to most populated ones. Macro-averaged F1

weights equally every class and is not influenced
by class imbalance. Statistical significance tests
are done using an approximate randomization test
based on the accuracy.3 We used SIGF V.2 (Padó,
2006) with 10,000 iterations.

2http://www.qatarliving.com/
3Significance tests operate on individual instances rather

than individual classes; thus not applicable for macro F1.

Corpora Type Train Dev. Test

QC3 asynchronous 1252 157 156
TA asynchronous 2968 372 371
BC3 asynchronous 1065 34 133
MRDA synchronous 50865 8366 10492
Total asyn. + sync. 56150 8929 11152

Table 5: Number of sentences in train, develop-
ment and test sets for different datasets.

Because of the noise and informal nature of
conversational texts, we performed a series of pre-
processing steps. We normalize all characters to
their lower-cased forms, truncate elongations to
two characters, spell out every digit and URL.
We further tokenized the texts using the CMU
TweetNLP tool (Gimpel et al., 2011).

In the following, we first demonstrate the effec-
tiveness of LSTM RNNs for learning representa-
tions of sentences automatically to identify their
speech acts. Then in subsection 4.2, we show the
usefulness of pairwise CRFs for capturing conver-
sational dependencies in speech act recognition.

4.1 Effectiveness of LSTM RNNs
To show the effectiveness of LSTMs for learn-
ing sentence representations, we split each of our
asynchronous corpora randomly into 70% sen-
tences for training, 10% for development, and
20% for testing. For MRDA, we use the same
train-test-dev split as Jeong et al. (2009). Table
5 summarizes the resultant datasets.

We compare the performance of LSTMs with
that of MaxEnt (ME) and Multi-layer Perceptron
(MLP) with one hidden layer.4 Both ME and MLP
were fed with the bag-of-word (BOW) represen-
tations of the sentence, i.e., vectors containing bi-
nary values indicating the presence or absence of
a word in the training set vocabulary.

We train the models by optimizing the cross en-
tropy using the gradient-based online learning al-
gorithm ADAM (Kingma and Ba, 2014).5 The
learning rate and other parameters were set to the
values as suggested by the authors. To avoid over-
fitting, we use dropout (Srivastava et al., 2014) of
hidden units and early stopping based on the loss
on the development set.6 Maximum number of
epochs was set to 25 for RNNs and 100 for ME
and MLP. We experimented with {0.0, 0.2, 0.4}

4More hidden layers worsened the performance.
5Other algorithms (SGD, Adagrad) gave similar results.
6l1 and l2 regularization on weights did not work well.

Total number of conv. 50
Avg. nb of comments per conv. 13.32
Avg. nb of sentences per conv. 33.28
Avg. nb of words per sentence 19.78

Table 4: Statistics about QC3 corpus.

Speech Act Distribution 

Suggestion 17.38% 0.86
Response 5.24% 0.43
Question 12.59% 0.87
Polite 6.13% 0.75
Statement 58.66% 0.78

Table 5: Corpus statistics for QC3.

conversation, we have created a new dataset called
Qatar Computing Conversational Corpus or QC3.

We selected 50 conversations from a popular
community question answering site named Qatar
Living2 for our annotation. We used 3 conversa-
tions for our pilot study and used the remaining 47
for the actual study. The resultant corpus on aver-
age contains 13.32 comments and 33.28 sentences
per conversation, and 19.78 words per sentence.

Two native speakers of English annotated each
conversation using a web-based annotation frame-
work. They were asked to annotate each sentence
with the most appropriate speech act tag from the
list of 5 speech act types. Since this task is not
always obvious, we gave them detailed annota-
tion guidelines with real examples. We use Co-
hens Kappa  to measure the agreement between
the annotators. Table 5 presents the distribution of
the speech acts and their respective  values.After
Statement, Suggestion is the most frequent class,
followed by Question and Polite. The  varies
from 0.43 (for Response) to 0.87 (for Question).

Finally, in order to create a consolidated dataset,
we collected the disagreements and employed a
third annotator to resolve those cases.

4 Experiments and Analysis

In this section we present our experimental set-
tings, results and analysis. We evaluate our mod-
els on the two forum corpora QC3 and TA. For
performance comparison, we use both accuracy
and macro-averaged F1 score. Accuracy gives the
overall performance of a classifier but could be bi-
ased to most populated ones. Macro-averaged F1

2http://www.qatarliving.com/

Corpora Type Train Dev. Test

QC3 asynchronous 1252 157 156
TA asynchronous 2968 372 371
BC3 asynchronous 1065 34 133
MRDA synchronous 50865 8366 10492
Total asyn. + sync. 56150 8929 11152

Table 6: Number of sentences in train, develop-
ment and test sets for different datasets.

weights equally every class and is not influenced
by class imbalance. Statistical significance tests
are done using an approximate randomization test
based on the accuracy.3 We used SIGF V.2 (Padó,
2006) with 10,000 iterations.

Because of the noise and informal nature of
conversational texts, we performed a series of pre-
processing steps. We normalize all characters to
their lower-cased forms, truncate elongations to
two characters, spell out every digit and URL.
We further tokenized the texts using the CMU
TweetNLP tool (Gimpel et al., 2011).

In the following, we first demonstrate the effec-
tiveness of LSTM RNNs for learning representa-
tions of sentences automatically to identify their
speech acts. Then in subsection 4.2, we show the
usefulness of pairwise CRFs for capturing conver-
sational dependencies in speech act recognition.

4.1 Effectiveness of LSTM RNNs

To show the effectiveness of LSTMs for learn-
ing sentence representations, we split each of our
asynchronous corpora randomly into 70% sen-
tences for training, 10% for development, and
20% for testing. For MRDA, we use the same
train-test-dev split as Jeong et al. (2009). Table
6 summarizes the resultant datasets.

We compare the performance of LSTMs with
that of MaxEnt (ME) and Multi-layer Perceptron
(MLP) with one hidden layer.4 Both ME and MLP
were fed with the bag-of-word (BOW) represen-
tations of the sentence, i.e., vectors containing bi-
nary values indicating the presence or absence of
a word in the training set vocabulary.

We train the models by optimizing the cross en-
tropy using the gradient-based online learning al-
gorithm ADAM (Kingma and Ba, 2014).5 The
learning rate and other parameters were set to the

3Significance tests operate on individual instances rather
than individual classes; thus not applicable for macro F1.

4More hidden layers worsened the performance.
5Other algorithms (SGD, Adagrad) gave similar results.
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•  Data split: 
o  Asynchronous: 80% train, 10% test, 10% valid. 
o  MRDA: Same as Jenog et al. (2009) 
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•  Baselines: 
o  ME: MaxEnt with BoW representation 
o  MLP: One hidden layer MLP with BoW representation 

•  LSTM settings: 
o  ADAM (Kingma & Ba, 2014) learning alg.  
o  Dropout & Early stopping. 
o  Random & Word2Vec initialization.  
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QC3 TA MRDA
Testset 5 folds Testset 5 folds 5 classes 12 classes

Jeong et al. (ng) - - - - - 57.53 (83.30)
Jeong et al. (All) - - - - - 59.04 (83.49)

ME 55.12 (75.64) 50.23 (71.37) 61.4 (85.44) 59.23 (84.85) 65.25 (83.95) 57.79 (82.84)
MLP 61.30 (74.36) 54.57 (71.63) 68.17 (85.98) 62.41 (85.02) 68.12 (84.24) 58.19 (83.24)

U-LSTM
r

51.57 (73.55) 48.64 (65.94) 56.54 (83.24) 56.39 (83.83) 71.29 (85.38) 58.72 (83.34)
U-LSTM

p

49.41 (70.97) 50.26 (65.62) 63.12(83.78) 59.10 (83.13) 72.32 (85.19) 59.05 (84.06)

B-LSTM
r

50.75 (72.26) 48.41 (66.19) 58.88 (82.97) 56.23 (83.34) 71.69 (85.62) 58.33 (83.49)
B-LSTM

p

53.22 (71.61) 51.59 (68.50) 60.73 (82.97) 59.68 (84.07) 72.02 (85.33) 60.12 (84.46*)

Table 6: Macro-averaged F1 and raw accuracy (in parenthesis) for baselines and LSTM variants on the
testset and 5-fold splits of different corpora. For MRDA, we use the same train-test-dev split as (Jeong
et al., 2009). Accuracy significantly superior to state-of-the-art is marked with *.

QC3 (Testset) TA (Testset)

ME 50.64 (71.15) 72.49 (84.10)
MLP 58.60 (74.36) 73.07 (86.29)
B-LSTM

p

66.40 (80.65*) 73.14 (87.01*)

Table 7: Results on CAT dataset.

Train Dev Test

QC3 38 (1332) 4 (111) 5 (122)
TA 160 (2957) 20 (310) 20 (444)
Total 197 (4289) 24 (421) 25 (566)

Table 8: Setting for CON dataset. The numbers in-
side parentheses indicate the number of sentences.

opment, respectively.7 The testsets contain 5 and
20 conversations for QC3 and TA, respectively.

As baselines, we use three models: (i) MEb,
a MaxEnt using BOW representation; (ii) B-
LSTMp, which is now trained on the concatenated
set of sentences from MRDA and CON training
sets; and (iii) MEe, a MaxEnt using sentence em-
beddings extracted from the B-LSTMp, i.e., the
sentence embeddings are used as feature vectors.

We experiment with the CRF variants in Table
1. The CRFs are trained on the CON training set
using the sentence embeddings that are extracted
by applying the B-LSTMp model, as was done
with MEe. Table 9 shows our results. We notice
that CRFs generally outperform MEs in accuracy.
This indicates that there are conversational depen-
dencies between the sentences in a conversation.

When we compare between CRF variants, we
notice that the model that does not consider any
link across comments perform the worst; see CRF
(LC-NO). A simple linear chain connection be-
tween sentences in their temporal order does not

7We use the concatenated sets as train and dev. sets.

QC3 TA

ME
b

56.67 (67.21) 63.29 (84.23)
B-LSTM

p

65.15 (77.87) 66.93 (85.13)
ME

e

59.94 (77.05) 59.55 (85.14)

CRF (LC-NO) 62.20 (77.87) 60.30 (85.81)
CRF (LC-LC) 62.35 (78.69) 60.30 (85.81)
CRF (LC-LC1) 65.94 (80.33*) 61.58 (86.54)
CRF (LC-FC1) 61.18 (77.87) 60.00 (85.36)
CRF (FC-FC) 64.54 (79.51*) 61.64 (86.81*)

Table 9: Results of CRFs on CON dataset.

improve much (CRF (LC-LC)), which indicates
that the widely used linear chain CRF (Lafferty
et al., 2001) is not the most appropriate model
for capturing conversational dependencies in these
conversations. The CRF (LC-LC1) is one of the
best performing models and perform significantly
(with 99% confidence) better than B-LSTMp.8

This model considers linear chain connections be-
tween sentences inside comments and only to the
first comment. Note that both QC3 and TA are
forum sites, where participants in a conversation
interact mostly with the person who posts the first
comment asking for some information. This is in-
teresting that our model can capture this aspect.

Another interesting observation is that when we
change the above model to consider relations with
every sentence in the first comment (CRF (LC-
FC1)), this degrades the performance. This could
be due to the fact that the information seeking per-
son first explains her situation, and then asks for
the information. Others tend to respond to the re-
quested information rather than to her situation.
The CRF (FC-FC) also yields as good results as
CRF (LC-LC1). This could be attributed to the ro-
bustness of the fully-connected CRF, which learns

8Significance was computed on the concatenated testset.
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QC3 TA MRDA
Testset 5 folds Testset 5 folds 5 classes 12 classes

Jeong et al. (ng) - - - - - 57.53 (83.30)
Jeong et al. (All) - - - - - 59.04 (83.49)

ME 55.12 (75.64) 50.23 (71.37) 61.4 (85.44) 59.23 (84.85) 65.25 (83.95) 57.79 (82.84)
MLP 61.30 (74.36) 54.57 (71.63) 68.17 (85.98) 62.41 (85.02) 68.12 (84.24) 58.19 (83.24)

U-LSTM
r

51.57 (73.55) 48.64 (65.94) 56.54 (83.24) 56.39 (83.83) 71.29 (85.38) 58.72 (83.34)
U-LSTM

p

49.41 (70.97) 50.26 (65.62) 63.12(83.78) 59.10 (83.13) 72.32 (85.19) 59.05 (84.06)

B-LSTM
r

50.75 (72.26) 48.41 (66.19) 58.88 (82.97) 56.23 (83.34) 71.69 (85.62) 58.33 (83.49)
B-LSTM

p

53.22 (71.61) 51.59 (68.50) 60.73 (82.97) 59.68 (84.07) 72.02 (85.33) 60.12 (84.46*)

Table 6: Macro-averaged F1 and raw accuracy (in parenthesis) for baselines and LSTM variants on the
testset and 5-fold splits of different corpora. For MRDA, we use the same train-test-dev split as (Jeong
et al., 2009). Accuracy significantly superior to state-of-the-art is marked with *.

QC3 (Testset) TA (Testset)

ME 50.64 (71.15) 72.49 (84.10)
MLP 58.60 (74.36) 73.07 (86.29)
B-LSTM

p

66.40 (80.65*) 73.14 (87.01*)

Table 7: Results on CAT dataset.

Train Dev Test

QC3 38 (1332) 4 (111) 5 (122)
TA 160 (2957) 20 (310) 20 (444)
Total 197 (4289) 24 (421) 25 (566)

Table 8: Setting for CON dataset. The numbers in-
side parentheses indicate the number of sentences.

opment, respectively.7 The testsets contain 5 and
20 conversations for QC3 and TA, respectively.

As baselines, we use three models: (i) MEb,
a MaxEnt using BOW representation; (ii) B-
LSTMp, which is now trained on the concatenated
set of sentences from MRDA and CON training
sets; and (iii) MEe, a MaxEnt using sentence em-
beddings extracted from the B-LSTMp, i.e., the
sentence embeddings are used as feature vectors.

We experiment with the CRF variants in Table
1. The CRFs are trained on the CON training set
using the sentence embeddings that are extracted
by applying the B-LSTMp model, as was done
with MEe. Table 9 shows our results. We notice
that CRFs generally outperform MEs in accuracy.
This indicates that there are conversational depen-
dencies between the sentences in a conversation.

When we compare between CRF variants, we
notice that the model that does not consider any
link across comments perform the worst; see CRF
(LC-NO). A simple linear chain connection be-
tween sentences in their temporal order does not

7We use the concatenated sets as train and dev. sets.

QC3 TA

ME
b

56.67 (67.21) 63.29 (84.23)
B-LSTM

p

65.15 (77.87) 66.93 (85.13)
ME

e

59.94 (77.05) 59.55 (85.14)

CRF (LC-NO) 62.20 (77.87) 60.30 (85.81)
CRF (LC-LC) 62.35 (78.69) 60.30 (85.81)
CRF (LC-LC1) 65.94 (80.33*) 61.58 (86.54)
CRF (LC-FC1) 61.18 (77.87) 60.00 (85.36)
CRF (FC-FC) 64.54 (79.51*) 61.64 (86.81*)

Table 9: Results of CRFs on CON dataset.

improve much (CRF (LC-LC)), which indicates
that the widely used linear chain CRF (Lafferty
et al., 2001) is not the most appropriate model
for capturing conversational dependencies in these
conversations. The CRF (LC-LC1) is one of the
best performing models and perform significantly
(with 99% confidence) better than B-LSTMp.8

This model considers linear chain connections be-
tween sentences inside comments and only to the
first comment. Note that both QC3 and TA are
forum sites, where participants in a conversation
interact mostly with the person who posts the first
comment asking for some information. This is in-
teresting that our model can capture this aspect.

Another interesting observation is that when we
change the above model to consider relations with
every sentence in the first comment (CRF (LC-
FC1)), this degrades the performance. This could
be due to the fact that the information seeking per-
son first explains her situation, and then asks for
the information. Others tend to respond to the re-
quested information rather than to her situation.
The CRF (FC-FC) also yields as good results as
CRF (LC-LC1). This could be attributed to the ro-
bustness of the fully-connected CRF, which learns

8Significance was computed on the concatenated testset.
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QC3 TA MRDA
Testset 5 folds Testset 5 folds 5 classes 12 classes

Jeong et al. (ng) - - - - - 57.53 (83.30)
Jeong et al. (All) - - - - - 59.04 (83.49)

ME 55.12 (75.64) 50.23 (71.37) 61.4 (85.44) 59.23 (84.85) 65.25 (83.95) 57.79 (82.84)
MLP 61.30 (74.36) 54.57 (71.63) 68.17 (85.98) 62.41 (85.02) 68.12 (84.24) 58.19 (83.24)

U-LSTM
r

51.57 (73.55) 48.64 (65.94) 56.54 (83.24) 56.39 (83.83) 71.29 (85.38) 58.72 (83.34)
U-LSTM

p

49.41 (70.97) 50.26 (65.62) 63.12(83.78) 59.10 (83.13) 72.32 (85.19) 59.05 (84.06)

B-LSTM
r

50.75 (72.26) 48.41 (66.19) 58.88 (82.97) 56.23 (83.34) 71.69 (85.62) 58.33 (83.49)
B-LSTM

p

53.22 (71.61) 51.59 (68.50) 60.73 (82.97) 59.68 (84.07) 72.02 (85.33) 60.12 (84.46*)

Table 6: Macro-averaged F1 and raw accuracy (in parenthesis) for baselines and LSTM variants on the
testset and 5-fold splits of different corpora. For MRDA, we use the same train-test-dev split as (Jeong
et al., 2009). Accuracy significantly superior to state-of-the-art is marked with *.

QC3 (Testset) TA (Testset)

ME 50.64 (71.15) 72.49 (84.10)
MLP 58.60 (74.36) 73.07 (86.29)
B-LSTM

p

66.40 (80.65*) 73.14 (87.01*)

Table 7: Results on CAT dataset.

Train Dev Test

QC3 38 (1332) 4 (111) 5 (122)
TA 160 (2957) 20 (310) 20 (444)
Total 197 (4289) 24 (421) 25 (566)

Table 8: Setting for CON dataset. The numbers in-
side parentheses indicate the number of sentences.

opment, respectively.7 The testsets contain 5 and
20 conversations for QC3 and TA, respectively.

As baselines, we use three models: (i) MEb,
a MaxEnt using BOW representation; (ii) B-
LSTMp, which is now trained on the concatenated
set of sentences from MRDA and CON training
sets; and (iii) MEe, a MaxEnt using sentence em-
beddings extracted from the B-LSTMp, i.e., the
sentence embeddings are used as feature vectors.

We experiment with the CRF variants in Table
1. The CRFs are trained on the CON training set
using the sentence embeddings that are extracted
by applying the B-LSTMp model, as was done
with MEe. Table 9 shows our results. We notice
that CRFs generally outperform MEs in accuracy.
This indicates that there are conversational depen-
dencies between the sentences in a conversation.

When we compare between CRF variants, we
notice that the model that does not consider any
link across comments perform the worst; see CRF
(LC-NO). A simple linear chain connection be-
tween sentences in their temporal order does not

7We use the concatenated sets as train and dev. sets.

QC3 TA

ME
b

56.67 (67.21) 63.29 (84.23)
B-LSTM

p

65.15 (77.87) 66.93 (85.13)
ME

e

59.94 (77.05) 59.55 (85.14)

CRF (LC-NO) 62.20 (77.87) 60.30 (85.81)
CRF (LC-LC) 62.35 (78.69) 60.30 (85.81)
CRF (LC-LC1) 65.94 (80.33*) 61.58 (86.54)
CRF (LC-FC1) 61.18 (77.87) 60.00 (85.36)
CRF (FC-FC) 64.54 (79.51*) 61.64 (86.81*)

Table 9: Results of CRFs on CON dataset.

improve much (CRF (LC-LC)), which indicates
that the widely used linear chain CRF (Lafferty
et al., 2001) is not the most appropriate model
for capturing conversational dependencies in these
conversations. The CRF (LC-LC1) is one of the
best performing models and perform significantly
(with 99% confidence) better than B-LSTMp.8

This model considers linear chain connections be-
tween sentences inside comments and only to the
first comment. Note that both QC3 and TA are
forum sites, where participants in a conversation
interact mostly with the person who posts the first
comment asking for some information. This is in-
teresting that our model can capture this aspect.

Another interesting observation is that when we
change the above model to consider relations with
every sentence in the first comment (CRF (LC-
FC1)), this degrades the performance. This could
be due to the fact that the information seeking per-
son first explains her situation, and then asks for
the information. Others tend to respond to the re-
quested information rather than to her situation.
The CRF (FC-FC) also yields as good results as
CRF (LC-LC1). This could be attributed to the ro-
bustness of the fully-connected CRF, which learns

8Significance was computed on the concatenated testset.
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QC3 TA MRDA
Testset 5 folds Testset 5 folds 5 classes 12 classes

Jeong et al. (ng) - - - - - 57.53 (83.30)
Jeong et al. (All) - - - - - 59.04 (83.49)

ME 55.12 (75.64) 50.23 (71.37) 61.4 (85.44) 59.23 (84.85) 65.25 (83.95) 57.79 (82.84)
MLP 61.30 (74.36) 54.57 (71.63) 68.17 (85.98) 62.41 (85.02) 68.12 (84.24) 58.19 (83.24)

U-LSTM
r

51.57 (73.55) 48.64 (65.94) 56.54 (83.24) 56.39 (83.83) 71.29 (85.38) 58.72 (83.34)
U-LSTM

p

49.41 (70.97) 50.26 (65.62) 63.12(83.78) 59.10 (83.13) 72.32 (85.19) 59.05 (84.06)

B-LSTM
r

50.75 (72.26) 48.41 (66.19) 58.88 (82.97) 56.23 (83.34) 71.69 (85.62) 58.33 (83.49)
B-LSTM

p

53.22 (71.61) 51.59 (68.50) 60.73 (82.97) 59.68 (84.07) 72.02 (85.33) 60.12 (84.46*)

Table 6: Macro-averaged F1 and raw accuracy (in parenthesis) for baselines and LSTM variants on the
testset and 5-fold splits of different corpora. For MRDA, we use the same train-test-dev split as (Jeong
et al., 2009). Accuracy significantly superior to state-of-the-art is marked with *.

QC3 (Testset) TA (Testset)

ME 50.64 (71.15) 72.49 (84.10)
MLP 58.60 (74.36) 73.07 (86.29)
B-LSTM

p

66.40 (80.65*) 73.14 (87.01*)

Table 7: Results on CAT dataset.

Train Dev Test

QC3 38 (1332) 4 (111) 5 (122)
TA 160 (2957) 20 (310) 20 (444)
Total 197 (4289) 24 (421) 25 (566)

Table 8: Setting for CON dataset. The numbers in-
side parentheses indicate the number of sentences.

opment, respectively.7 The testsets contain 5 and
20 conversations for QC3 and TA, respectively.

As baselines, we use three models: (i) MEb,
a MaxEnt using BOW representation; (ii) B-
LSTMp, which is now trained on the concatenated
set of sentences from MRDA and CON training
sets; and (iii) MEe, a MaxEnt using sentence em-
beddings extracted from the B-LSTMp, i.e., the
sentence embeddings are used as feature vectors.

We experiment with the CRF variants in Table
1. The CRFs are trained on the CON training set
using the sentence embeddings that are extracted
by applying the B-LSTMp model, as was done
with MEe. Table 9 shows our results. We notice
that CRFs generally outperform MEs in accuracy.
This indicates that there are conversational depen-
dencies between the sentences in a conversation.

When we compare between CRF variants, we
notice that the model that does not consider any
link across comments perform the worst; see CRF
(LC-NO). A simple linear chain connection be-
tween sentences in their temporal order does not

7We use the concatenated sets as train and dev. sets.

QC3 TA

ME
b

56.67 (67.21) 63.29 (84.23)
B-LSTM

p

65.15 (77.87) 66.93 (85.13)
ME

e

59.94 (77.05) 59.55 (85.14)

CRF (LC-NO) 62.20 (77.87) 60.30 (85.81)
CRF (LC-LC) 62.35 (78.69) 60.30 (85.81)
CRF (LC-LC1) 65.94 (80.33*) 61.58 (86.54)
CRF (LC-FC1) 61.18 (77.87) 60.00 (85.36)
CRF (FC-FC) 64.54 (79.51*) 61.64 (86.81*)

Table 9: Results of CRFs on CON dataset.

improve much (CRF (LC-LC)), which indicates
that the widely used linear chain CRF (Lafferty
et al., 2001) is not the most appropriate model
for capturing conversational dependencies in these
conversations. The CRF (LC-LC1) is one of the
best performing models and perform significantly
(with 99% confidence) better than B-LSTMp.8

This model considers linear chain connections be-
tween sentences inside comments and only to the
first comment. Note that both QC3 and TA are
forum sites, where participants in a conversation
interact mostly with the person who posts the first
comment asking for some information. This is in-
teresting that our model can capture this aspect.

Another interesting observation is that when we
change the above model to consider relations with
every sentence in the first comment (CRF (LC-
FC1)), this degrades the performance. This could
be due to the fact that the information seeking per-
son first explains her situation, and then asks for
the information. Others tend to respond to the re-
quested information rather than to her situation.
The CRF (FC-FC) also yields as good results as
CRF (LC-LC1). This could be attributed to the ro-
bustness of the fully-connected CRF, which learns

8Significance was computed on the concatenated testset.
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Jeong et al. (ng) - - - - - 57.53 (83.30)
Jeong et al. (All) - - - - - 59.04 (83.49)

ME 55.12 (75.64) 50.23 (71.37) 61.4 (85.44) 59.23 (84.85) 65.25 (83.95) 57.79 (82.84)
MLP 61.30 (74.36) 54.57 (71.63) 68.17 (85.98) 62.41 (85.02) 68.12 (84.24) 58.19 (83.24)

U-LSTM
r

51.57 (73.55) 48.64 (65.94) 56.54 (83.24) 56.39 (83.83) 71.29 (85.38) 58.72 (83.34)
U-LSTM

p

49.41 (70.97) 50.26 (65.62) 63.12(83.78) 59.10 (83.13) 72.32 (85.19) 59.05 (84.06)

B-LSTM
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50.75 (72.26) 48.41 (66.19) 58.88 (82.97) 56.23 (83.34) 71.69 (85.62) 58.33 (83.49)
B-LSTM

p

53.22 (71.61) 51.59 (68.50) 60.73 (82.97) 59.68 (84.07) 72.02 (85.33) 60.12 (84.46*)

Table 6: Macro-averaged F1 and raw accuracy (in parenthesis) for baselines and LSTM variants on the
testset and 5-fold splits of different corpora. For MRDA, we use the same train-test-dev split as (Jeong
et al., 2009). Accuracy significantly superior to state-of-the-art is marked with *.

QC3 (Testset) TA (Testset)

ME 50.64 (71.15) 72.49 (84.10)
MLP 58.60 (74.36) 73.07 (86.29)
B-LSTM

p

66.40 (80.65*) 73.14 (87.01*)

Table 7: Results on CAT dataset.

Train Dev Test

QC3 38 (1332) 4 (111) 5 (122)
TA 160 (2957) 20 (310) 20 (444)
Total 197 (4289) 24 (421) 25 (566)

Table 8: Setting for CON dataset. The numbers in-
side parentheses indicate the number of sentences.

opment, respectively.7 The testsets contain 5 and
20 conversations for QC3 and TA, respectively.

As baselines, we use three models: (i) MEb,
a MaxEnt using BOW representation; (ii) B-
LSTMp, which is now trained on the concatenated
set of sentences from MRDA and CON training
sets; and (iii) MEe, a MaxEnt using sentence em-
beddings extracted from the B-LSTMp, i.e., the
sentence embeddings are used as feature vectors.

We experiment with the CRF variants in Table
1. The CRFs are trained on the CON training set
using the sentence embeddings that are extracted
by applying the B-LSTMp model, as was done
with MEe. Table 9 shows our results. We notice
that CRFs generally outperform MEs in accuracy.
This indicates that there are conversational depen-
dencies between the sentences in a conversation.

When we compare between CRF variants, we
notice that the model that does not consider any
link across comments perform the worst; see CRF
(LC-NO). A simple linear chain connection be-
tween sentences in their temporal order does not

7We use the concatenated sets as train and dev. sets.

QC3 TA

ME
b

56.67 (67.21) 63.29 (84.23)
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65.15 (77.87) 66.93 (85.13)
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e

59.94 (77.05) 59.55 (85.14)

CRF (LC-NO) 62.20 (77.87) 60.30 (85.81)
CRF (LC-LC) 62.35 (78.69) 60.30 (85.81)
CRF (LC-LC1) 65.94 (80.33*) 61.58 (86.54)
CRF (LC-FC1) 61.18 (77.87) 60.00 (85.36)
CRF (FC-FC) 64.54 (79.51*) 61.64 (86.81*)

Table 9: Results of CRFs on CON dataset.

improve much (CRF (LC-LC)), which indicates
that the widely used linear chain CRF (Lafferty
et al., 2001) is not the most appropriate model
for capturing conversational dependencies in these
conversations. The CRF (LC-LC1) is one of the
best performing models and perform significantly
(with 99% confidence) better than B-LSTMp.8

This model considers linear chain connections be-
tween sentences inside comments and only to the
first comment. Note that both QC3 and TA are
forum sites, where participants in a conversation
interact mostly with the person who posts the first
comment asking for some information. This is in-
teresting that our model can capture this aspect.

Another interesting observation is that when we
change the above model to consider relations with
every sentence in the first comment (CRF (LC-
FC1)), this degrades the performance. This could
be due to the fact that the information seeking per-
son first explains her situation, and then asks for
the information. Others tend to respond to the re-
quested information rather than to her situation.
The CRF (FC-FC) also yields as good results as
CRF (LC-LC1). This could be attributed to the ro-
bustness of the fully-connected CRF, which learns

8Significance was computed on the concatenated testset.

•  CRF	
  variants	
  
Tag Connection type Applicable to

NO No connection between nodes intra & across
LC Linear chain connection intra & across
FC Fully connected intra & across
FC1 Fully connected with first comment only across
LC1 Linear chain with first comment only across

Table 1: Connection types in CRF models.

(a) NO-NO (MaxEnt) (b) LC-LC

(c) LC-LC1 (d) LC-FC1

Figure 3: CRFs over different graph structures.

Figure 3a shows the structure for NO-NO con-
figuration, where there is no link between nodes of
both intra- and across- comments. In this setting,
the CRF model is equivalent to MaxEnt. Figure
3b shows the structure for LC-LC, where there
are linear chain relations between nodes of both
intra- and across- comments. The linear chain
across comments refers to the structure, where
the last sentence of each comment is connected
to the first sentence of the comment that comes
next in the temporal order (i.e., posting time). Fig-
ures 3c shows the CRF for LC-LC1, where sen-
tences inside a comment have linear chain connec-
tions, and the last sentence of the first comment is
connected to the first sentence of the other com-
ments. Similarly, Figure 3d shows the graph struc-
ture for LC-FC1 configuration, where sentences
inside comments have linear chain connections,
and sentences of the first comment are fully con-
nected with the sentences of the other comments.

3 Corpora

There exist large corpora of utterances annotated
with speech acts in synchronous spoken domains,
e.g., Switchboard-DAMSL or SWBD (Jurafsky et
al., 1997) and Meeting Recorder Dialog Act or
MRDA (Dhillon et al., 2004). However, such large
corpus does not exist in asynchronous domains.
Some prior work (Cohen et al., 2004; Ravi and
Kim, 2007; Feng et al., 2006; Bhatia et al., 2014)
tackles the task at the comment level, and uses

TA BC3
Total number of conv. 200 39
Avg. nb of comments per conv. 4.02 6.54
Avg. nb of sentences per conv. 18.56 34.15
Avg. nb of words per sentence 14.90 12.61

Table 2: Statistics about TA and BC3 corpora.

Tag Description TA BC3 MRDA
SU Suggestion 7.71% 5.48% 5.97%
R Response 2.4% 3.75% 15.63%
Q Question 14.71% 8.41% 8.62%
P Polite 9.57% 8.63% 3.77%
ST Statement 65.62% 73.72% 66.00%

Table 3: Distribution of speech acts in our corpora.

task-specific tagsets. In contrast, in this work we
are interested in identifying speech acts at the sen-
tence level, and also using a standard tagset like
the ones defined in SWBD and MRDA.

More recent studies attempt to solve the task at
the sentence level. Jeong et al. (2009) first created
a dataset of TripAdvisor (TA) forum conversations
annotated with the standard 12 act types defined in
MRDA. They also remapped the BC3 email cor-
pus (Ulrich et al., 2008) according to this tagset.
Table 10 in the Appendix presents the tags and
their relative frequency in the two datasets. Subse-
quent studies (Joty et al., 2011; Tavafi et al., 2013;
Oya and Carenini, 2014) use these datasets. We
also use these datasets in our work. Table 2 shows
some basic statistics about these datasets. On aver-
age, BC3 conversations are longer than TA in both
number of comments and number of sentences.

Since these datasets are relatively small in size,
we group the 12 acts into 5 coarser classes to
learn a reasonable classifier.1 More specifically,
all the question types are grouped into one gen-
eral class Question, all response types into Re-
sponse, and appreciation and polite mechanisms
into Polite class. Also since deep neural models
like LSTM RNNs require a lot of training data,
we also utilize the MRDA meeting corpus. Ta-
ble 3 shows the label distribution of the resultant
datasets. Statement is the most dominant class,
followed by Question, Polite and Suggestion.

QC3 Conversational Corpus Since both TA
and BC3 are quite small to make a general com-
ment about model performance in asynchronous

1Some prior work (Tavafi et al., 2013; Oya and Carenini,
2014) also took the same approach.
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QC3 TA MRDA
Testset 5 folds Testset 5 folds 5 classes 12 classes

Jeong et al. (ng) - - - - - 57.53 (83.30)
Jeong et al. (All) - - - - - 59.04 (83.49)

ME 55.12 (75.64) 50.23 (71.37) 61.4 (85.44) 59.23 (84.85) 65.25 (83.95) 57.79 (82.84)
MLP 61.30 (74.36) 54.57 (71.63) 68.17 (85.98) 62.41 (85.02) 68.12 (84.24) 58.19 (83.24)

U-LSTM
r

51.57 (73.55) 48.64 (65.94) 56.54 (83.24) 56.39 (83.83) 71.29 (85.38) 58.72 (83.34)
U-LSTM

p

49.41 (70.97) 50.26 (65.62) 63.12(83.78) 59.10 (83.13) 72.32 (85.19) 59.05 (84.06)

B-LSTM
r

50.75 (72.26) 48.41 (66.19) 58.88 (82.97) 56.23 (83.34) 71.69 (85.62) 58.33 (83.49)
B-LSTM

p

53.22 (71.61) 51.59 (68.50) 60.73 (82.97) 59.68 (84.07) 72.02 (85.33) 60.12 (84.46*)

Table 6: Macro-averaged F1 and raw accuracy (in parenthesis) for baselines and LSTM variants on the
testset and 5-fold splits of different corpora. For MRDA, we use the same train-test-dev split as (Jeong
et al., 2009). Accuracy significantly superior to state-of-the-art is marked with *.

QC3 (Testset) TA (Testset)

ME 50.64 (71.15) 72.49 (84.10)
MLP 58.60 (74.36) 73.07 (86.29)
B-LSTM

p

66.40 (80.65*) 73.14 (87.01*)

Table 7: Results on CAT dataset.

Train Dev Test

QC3 38 (1332) 4 (111) 5 (122)
TA 160 (2957) 20 (310) 20 (444)
Total 197 (4289) 24 (421) 25 (566)

Table 8: Setting for CON dataset. The numbers in-
side parentheses indicate the number of sentences.

opment, respectively.7 The testsets contain 5 and
20 conversations for QC3 and TA, respectively.

As baselines, we use three models: (i) MEb,
a MaxEnt using BOW representation; (ii) B-
LSTMp, which is now trained on the concatenated
set of sentences from MRDA and CON training
sets; and (iii) MEe, a MaxEnt using sentence em-
beddings extracted from the B-LSTMp, i.e., the
sentence embeddings are used as feature vectors.

We experiment with the CRF variants in Table
1. The CRFs are trained on the CON training set
using the sentence embeddings that are extracted
by applying the B-LSTMp model, as was done
with MEe. Table 9 shows our results. We notice
that CRFs generally outperform MEs in accuracy.
This indicates that there are conversational depen-
dencies between the sentences in a conversation.

When we compare between CRF variants, we
notice that the model that does not consider any
link across comments perform the worst; see CRF
(LC-NO). A simple linear chain connection be-
tween sentences in their temporal order does not

7We use the concatenated sets as train and dev. sets.

QC3 TA

ME
b

56.67 (67.21) 63.29 (84.23)
B-LSTM

p

65.15 (77.87) 66.93 (85.13)
ME

e

59.94 (77.05) 59.55 (85.14)

CRF (LC-NO) 62.20 (77.87) 60.30 (85.81)
CRF (LC-LC) 62.35 (78.69) 60.30 (85.81)
CRF (LC-LC1) 65.94 (80.33*) 61.58 (86.54)
CRF (LC-FC1) 61.18 (77.87) 60.00 (85.36)
CRF (FC-FC) 64.54 (79.51*) 61.64 (86.81*)

Table 9: Results of CRFs on CON dataset.

improve much (CRF (LC-LC)), which indicates
that the widely used linear chain CRF (Lafferty
et al., 2001) is not the most appropriate model
for capturing conversational dependencies in these
conversations. The CRF (LC-LC1) is one of the
best performing models and perform significantly
(with 99% confidence) better than B-LSTMp.8

This model considers linear chain connections be-
tween sentences inside comments and only to the
first comment. Note that both QC3 and TA are
forum sites, where participants in a conversation
interact mostly with the person who posts the first
comment asking for some information. This is in-
teresting that our model can capture this aspect.

Another interesting observation is that when we
change the above model to consider relations with
every sentence in the first comment (CRF (LC-
FC1)), this degrades the performance. This could
be due to the fact that the information seeking per-
son first explains her situation, and then asks for
the information. Others tend to respond to the re-
quested information rather than to her situation.
The CRF (FC-FC) also yields as good results as
CRF (LC-LC1). This could be attributed to the ro-
bustness of the fully-connected CRF, which learns

8Significance was computed on the concatenated testset.

o  MEb	
  :	
  MaxEnt	
  with	
  BoW	
  representa:on.	
  
o  B-­‐LSTMp	
  :	
  Bi-­‐direc:onal	
  LSTM	
  with	
  pre-­‐trained	
  embeddings.	
  	
   	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Trained	
  on	
  concatenated	
  dataset.	
  	
  
o  MEe	
  :	
  MaxEnt	
  with	
  sentence	
  embeddings	
  from	
  B-­‐LSTMp.	
  

•  Baselines	
  (local	
  models)	
  



Experiments: Effectiveness of CRFs 

16-­‐08-­‐08	
   ACL-­‐2016	
   22	
  

QC3 TA MRDA
Testset 5 folds Testset 5 folds 5 classes 12 classes

Jeong et al. (ng) - - - - - 57.53 (83.30)
Jeong et al. (All) - - - - - 59.04 (83.49)

ME 55.12 (75.64) 50.23 (71.37) 61.4 (85.44) 59.23 (84.85) 65.25 (83.95) 57.79 (82.84)
MLP 61.30 (74.36) 54.57 (71.63) 68.17 (85.98) 62.41 (85.02) 68.12 (84.24) 58.19 (83.24)

U-LSTM
r

51.57 (73.55) 48.64 (65.94) 56.54 (83.24) 56.39 (83.83) 71.29 (85.38) 58.72 (83.34)
U-LSTM

p

49.41 (70.97) 50.26 (65.62) 63.12(83.78) 59.10 (83.13) 72.32 (85.19) 59.05 (84.06)

B-LSTM
r

50.75 (72.26) 48.41 (66.19) 58.88 (82.97) 56.23 (83.34) 71.69 (85.62) 58.33 (83.49)
B-LSTM

p

53.22 (71.61) 51.59 (68.50) 60.73 (82.97) 59.68 (84.07) 72.02 (85.33) 60.12 (84.46*)

Table 6: Macro-averaged F1 and raw accuracy (in parenthesis) for baselines and LSTM variants on the
testset and 5-fold splits of different corpora. For MRDA, we use the same train-test-dev split as (Jeong
et al., 2009). Accuracy significantly superior to state-of-the-art is marked with *.

QC3 (Testset) TA (Testset)

ME 50.64 (71.15) 72.49 (84.10)
MLP 58.60 (74.36) 73.07 (86.29)
B-LSTM

p

66.40 (80.65*) 73.14 (87.01*)

Table 7: Results on CAT dataset.

Train Dev Test

QC3 38 (1332) 4 (111) 5 (122)
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opment, respectively.7 The testsets contain 5 and
20 conversations for QC3 and TA, respectively.

As baselines, we use three models: (i) MEb,
a MaxEnt using BOW representation; (ii) B-
LSTMp, which is now trained on the concatenated
set of sentences from MRDA and CON training
sets; and (iii) MEe, a MaxEnt using sentence em-
beddings extracted from the B-LSTMp, i.e., the
sentence embeddings are used as feature vectors.

We experiment with the CRF variants in Table
1. The CRFs are trained on the CON training set
using the sentence embeddings that are extracted
by applying the B-LSTMp model, as was done
with MEe. Table 9 shows our results. We notice
that CRFs generally outperform MEs in accuracy.
This indicates that there are conversational depen-
dencies between the sentences in a conversation.

When we compare between CRF variants, we
notice that the model that does not consider any
link across comments perform the worst; see CRF
(LC-NO). A simple linear chain connection be-
tween sentences in their temporal order does not

7We use the concatenated sets as train and dev. sets.
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65.15 (77.87) 66.93 (85.13)
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59.94 (77.05) 59.55 (85.14)

CRF (LC-NO) 62.20 (77.87) 60.30 (85.81)
CRF (LC-LC) 62.35 (78.69) 60.30 (85.81)
CRF (LC-LC1) 65.94 (80.33*) 61.58 (86.54)
CRF (LC-FC1) 61.18 (77.87) 60.00 (85.36)
CRF (FC-FC) 64.54 (79.51*) 61.64 (86.81*)

Table 9: Results of CRFs on CON dataset.

improve much (CRF (LC-LC)), which indicates
that the widely used linear chain CRF (Lafferty
et al., 2001) is not the most appropriate model
for capturing conversational dependencies in these
conversations. The CRF (LC-LC1) is one of the
best performing models and perform significantly
(with 99% confidence) better than B-LSTMp.8

This model considers linear chain connections be-
tween sentences inside comments and only to the
first comment. Note that both QC3 and TA are
forum sites, where participants in a conversation
interact mostly with the person who posts the first
comment asking for some information. This is in-
teresting that our model can capture this aspect.

Another interesting observation is that when we
change the above model to consider relations with
every sentence in the first comment (CRF (LC-
FC1)), this degrades the performance. This could
be due to the fact that the information seeking per-
son first explains her situation, and then asks for
the information. Others tend to respond to the re-
quested information rather than to her situation.
The CRF (FC-FC) also yields as good results as
CRF (LC-LC1). This could be attributed to the ro-
bustness of the fully-connected CRF, which learns

8Significance was computed on the concatenated testset.
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Abstract

This paper addresses the problem of
speech act recognition in written asyn-
chronous conversations (e.g., fora,
emails). We propose a class of conditional
structured models defined over arbitrary
graph structures to capture the conversa-
tional dependencies between sentences.
Our models use sentence representations
encoded by a long short term memory
(LSTM) recurrent neural model. Empir-
ical evaluation shows the effectiveness
of our approach over existing ones:
(i) LSTMs provide better task-specific
representations, and (ii) the global joint
model improves over local models.

1 Introduction

Asynchronous conversations, where participants
communicate with each other at different times
(e.g., fora, emails), have become very common for
discussing events, issues, queries and life experi-
ences. In doing so, participants interact with each
other in complex ways, performing certain com-
municative acts like asking questions, requesting
information or suggesting something. These are
called speech acts (Austin, 1962).

For example, consider the excerpt of a forum
conversation from our corpus in Figure 1. The
participant who posted the first comment C1, de-
scribes his situation by the first two sentences and
then asks a question in the third sentence. Other
participants respond to the query by suggesting
something or asking for clarification. In this pro-
cess, the participants get into a conversation by
taking turns, each of which consists of one or
more speech acts. The two-part structures across
posts like ‘question-answer’ and ‘request-grant’
are called adjacency pairs (Schegloff, 1968).

C1: My son wish to do his bachelor degree in Mechanical
Engineering in an affordable Canadian university.
Human: st, Local: st, Global: st
The info. available in the net and the people who wish
to offer services are too many and some are misleading.
Human: st, Local: st, Global: st
The preliminary preparations,eligibility,the require
funds etc., are some of the issues which I wish to know
from any panel members of this forum .. (truncated)
Human: ques, Local: st, Global: st

C3 (truncated)...take a list of canadian universities and then
create a table and insert all the relevant information by
reading each and every program info on the web.
Human: sug, Local: sug, Global: sug
Without doing a research my advice would be to apply
to UVIC .. for the following reasons .. (truncated)
Human: sug, Local: sug, Global: sug
UBC is good too... but it is expensive particularly for
international students due to tuition .. (truncated)
Human: sug, Local: sug, Global: sug
most of them accept on-line or email application.
Human: st, Local: st, Global: st
Good luck !!
Human: pol, Local: pol, Global: pol

C4 snakyy21: UVIC is a short form of? I have already
started researching for my brother and found “College
of North Atlantic” and .. (truncated)
Human: ques, Local: st, Global: ques
but not sure about the reputation..
Human: st, Local: res, Global: st

C5 thank you for sharing useful tips will follow your advise.
Human: pol, Local: pol, Global: pol

Figure 1: Example conversation with Human an-
notations and automatic predictions by a Local
classifier and a Global classifier. The labels st,
ques, sug, and pol refers to Statement, Question,
Suggestion, and Polite speech acts, respectively.

Identification of speech acts is an important step
towards deep conversation analysis in these media
(Bangalore et al., 2006), and has been shown to be
useful in many downstream applications including
summarization (McKeown et al., 2007) and ques-
tion answering (Hong and Davison, 2009).

Previous attempts to automatic (sentence-level)
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•  Two-­‐step	
  framework	
  for	
  speech	
  act	
  recogni:on	
  
o  LSTM-­‐RNN	
  to	
  encode	
  each	
  sentence	
  
o  Pairwise	
  CRFs	
  to	
  model	
  conversa:onal	
  dependencies	
  

•  Combine	
  the	
  input	
  representa:onal	
  power	
  of	
  DNNs	
  with	
  
the	
  output	
  representa:onal	
  power	
  of	
  PGMs.	
  	
  

•  LSTMs	
  provide	
  beKer	
  representa:ons	
  but	
  requires	
  more	
  data	
  
•  Global	
  joint	
  models	
  improve	
  over	
  local	
  models	
  given	
  that	
  it	
  

considers	
  the	
  right	
  graph	
  structure.	
  	
  

•  Combine	
  CRFs	
  with	
  LSTMs	
  to	
  perform	
  the	
  two	
  steps	
  
jointly	
  by	
  taking	
  LBP	
  errors	
  back	
  to	
  the	
  embedding	
  layers.	
  	
  

•  Apply	
  to	
  conversa:ons	
  where	
  graph	
  structure	
  is	
  already	
  
given	
  (e.g.,	
  Slashdot)	
  or	
  extractable	
  (emails).	
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Belief Propagation for Pairwise Factors 

3.1 Joint Learning of Two Classifiers with
Global Thread-Level Inference

Our aim is to train the local classifiers so that they
produce correct global classification. To this end, in
our first model we train the node- and the edge-level
classifiers jointly based on global feedback provided
by a global inference algorithm. The global feed-
back determines how much to adjust the local classi-
fiers so that the classifiers and the inference together
produce the desired result. We use log-linear models
(aka maximum entropy) for both classifiers:

 n(yi = k|xi,v) =

exp(v

T
k xi)PK

k0=1 exp(v
T
k xi)

(1)

 e(yi,j = l|�(xi,xj),w)=

exp(w

T
l �(xi,xj))PL

l0=1 exp(w
T
l0�(xi,xj))

(2)

The log likelihood (LL) for one data point (x,y)
(i.e., a thread) can be written as follows:

f(✓) =
X

i2V

KX

k=1

yki
⇥
v

T
k xi � logZ(v,xi)

⇤
+

X

(i,j)2E

LX

l=1

yli,j
⇥
w

T
l �(xi,xj)� logZ(w,xi,xj)

⇤
(3)

where yki and yli,j are the gold labels for i-th node
and (i, j)-th edge expressed in 1-of-K (or 1-of-L)
encoding, respectively, and Z(·) terms are the local
normalization constants.

We give a pseudocode in Algorithm 1 that trains
this model in an online fashion using feedback from
the loopy belief propagation (LBP) inference algo-
rithm (to be described later in Section 3.1.1). Specif-
ically, the marginals from the LBP are used in a
stochastic gradient descent (SGD) algorithm, which
has the following (minibatch) update rule:

✓t+1 = ✓t � ⌘t
1

N
f 0
(✓t) (4)

where ✓t and ⌘t are the model parameters and the
learning rate at step t, respectively, and 1

N f 0
(✓t) is

the mean gradient for the minibatch (a thread). For
our maximum entropy models, the gradients become

f 0
(v) =

X

i2V

[�n(yi)� yi] .xi (5)

f 0
(w) =

X

(i,j)2E

[�e(yi,j)� yi,j ] .�(xi,xj) (6)

Algorithm 1: Joint learning of local classifiers
with global thread-level inference

1. Initialize the model parameters v and w;
2. repeat

for each thread G = (V,E) do
a. Compute node and edge probabilities
 n(yi|xi,v) and  e(yi,j |�(xi,xj),w);
b. Infer node and edge marginals �n(yi)
and �e(yi,j) using sum-product LBP;
c. Update: v = v � ⌘

|V |f
0
(v);

d. Update: w = w � ⌘
|E|f

0
(w);

end
until convergence;

In the above equations, � and y are the marginals
and the gold labels, respectively.

Note that when applying the model to the test
threads, we need to perform the same global infer-
ence to get the best label assignments.

3.1.1 Inference Using Belief Propagation
Belief Propagation or BP (Pearl, 1988) is a mes-

sage passing algorithm for inference in probabilis-
tic graphical models. It supports (i) sum-product,
to compute the marginal distribution for each un-
observed variable, i.e., p(yi|x, ✓); and (ii) max-
product, to compute the most likely label configu-
ration, i.e., argmaxy p(y|x, ✓). We describe here
the variant that operates on undirected graphs (aka
Markov random fields) with pairwise factors, which
uses the following equations:
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k2N(i)\j

µk!i(yi) (7)

�n(yi) ⇡  n(yi)
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where µi!j is a message from node i to node j,
N(i) are the nodes neighbouring i, and  n(yi) and
 e(yi,j) are the node and the edge factors.

The algorithm proceeds by sending messages on
each edge until the node beliefs �n(yi) stabilize.
The edge beliefs can be written as follows:
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(✓t) (4)

where ✓t and ⌘t are the model parameters and the
learning rate at step t, respectively, and 1

N f 0
(✓t) is

the mean gradient for the minibatch (a thread). For
our maximum entropy models, the gradients become

f 0
(v) =

X

i2V

[�n(yi)� yi] .xi (5)

f 0
(w) =

X

(i,j)2E

[�e(yi,j)� yi,j ] .�(xi,xj) (6)

Algorithm 1: Joint learning of local classifiers
with global thread-level inference

1. Initialize the model parameters v and w;
2. repeat

for each thread G = (V,E) do
a. Compute node and edge probabilities
 n(yi|xi,v) and  e(yi,j |�(xi,xj),w);
b. Infer node and edge marginals �n(yi)
and �e(yi,j) using sum-product LBP;
c. Update: v = v � ⌘

|V |f
0
(v);

d. Update: w = w � ⌘
|E|f

0
(w);

end
until convergence;

In the above equations, � and y are the marginals
and the gold labels, respectively.

Note that when applying the model to the test
threads, we need to perform the same global infer-
ence to get the best label assignments.

3.1.1 Inference Using Belief Propagation
Belief Propagation or BP (Pearl, 1988) is a mes-

sage passing algorithm for inference in probabilis-
tic graphical models. It supports (i) sum-product,
to compute the marginal distribution for each un-
observed variable, i.e., p(yi|x, ✓); and (ii) max-
product, to compute the most likely label configu-
ration, i.e., argmaxy p(y|x, ✓). We describe here
the variant that operates on undirected graphs (aka
Markov random fields) with pairwise factors, which
uses the following equations:

µi!j(yj) =

X

yi

 n(yi) e(yi,j)
Y

k2N(i)\j

µk!i(yi) (7)

�n(yi) ⇡  n(yi)
Y

j2N(i)

µj!i(yi) (8)

where µi!j is a message from node i to node j,
N(i) are the nodes neighbouring i, and  n(yi) and
 e(yi,j) are the node and the edge factors.

The algorithm proceeds by sending messages on
each edge until the node beliefs �n(yi) stabilize.
The edge beliefs can be written as follows:

�e(yi,j) ⇡  e(yi,j)⇥ µi!j(yi)⇥ µj!i(yj) (9)
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where N(v) is the set of neighbouring (factor) nodes to v. If N(v) \ {a}
is empty, then µ
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) is set to the uniform distribution. For example,
in Figure 1 the message
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Figure 1: A factor graph where the factors are defined on each variable pair.

• A message from a factor node a to a variable node v (µ
a!v

) is the product
of the factor with messages from all other nodes, marginalized over all
variables except v:

µ

a!v

(x
v

) =
X

x

0
a:x

0
v=xv

f

a

(x0
a

)
Y

v

⇤2N(a)\{v}

µ

v

⇤!a

(x
v⇤); 8xv

2 Dom(v) (4)

where N(a) is the set of neighboring (variable) nodes to a. If N(a)\{v} is
empty then µ

a!v

(x
v

) = f

a

(x
v

), since in this case x

v

= x

a

. For example,
in the pairwise factor graph of Figure 1 the message

µ

f1,2!v1 =
X

v2

f2(v2)f1,2(v1, v2)⇥ µ

v2!f1,2 (5)

For a pairwise graph, we can further combine Equations 3 and 5, and write
the following using only the random variables:

µ

v2!v1 =
X

v2

f2(v2)f1,2(v1, v2)
Y

v

⇤2N(v2)\{v1}

µ

v

⇤!v2 (6)

The net e↵ect of the two types of messages is that a variable node gets
influenced by its neighboring variable nodes in the original graph, where each
influence is factor marginalized over other variables. In a typical run, each
message will be updated iteratively from the previous value of the neighboring
messages. Di↵erent scheduling can be used for updating the messages. In the
case where the graphical model is a tree, an optimal scheduling allows to reach
convergence after computing each message only once. When the factor graph
has cycles or loops, such an optimal scheduling does not exist, and a typical
choice is to update all messages simultaneously at each iteration.
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where N(a) is the set of neighboring (variable) nodes to a. If N(a)\{v} is
empty then µa!v(xv) = fa(xv), since in this case xv = xa. For example,
in the pairwise factor graph of Figure 1 the message

µf1,2!v1 =
X

v2

f2(v2)f1,2(v1, v2)⇥ µv2!f1,2 (5)

For a pairwise graph, we can further combine Equations 3 and 5, and write
the following using only the random variables:
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Y
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The net e↵ect of the two types of messages is that a variable node gets
influenced by its neighboring variable nodes in the original graph, where each
influence is factor marginalized over other variables. In a typical run, each
message will be updated iteratively from the previous value of the neighboring
messages. Di↵erent scheduling can be used for updating the messages. In the
case where the graphical model is a tree, an optimal scheduling allows to reach
convergence after computing each message only once. When the factor graph
has cycles or loops, such an optimal scheduling does not exist, and a typical
choice is to update all messages simultaneously at each iteration.
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Upon convergence, the estimated marginal distribution of each node is pro-
portional to the product of all messages from adjoining factors:

P (x
v

) /
Y

a2N(v)

µ

a!v

(x
v

) (7)

Likewise, the estimated joint marginal distribution of the set of variables
belonging to one factor is proportional to the product of the factor and the
messages from the variables:

P (x
a

) / f

a

(x
a

)
Y

v2N(a)

µ

v!a

(x
v

) (8)

In the case where the factor graph is acyclic (i.e. tree, forest), these estimated
marginal actually converge to the true marginals in a finite number of iterations.
Since in our work we are interested in general graphs with loops, in the following
we describe an approximation algorithm for such graphs, i.e., the loopy BP.

2.1 Approximate Algorithm for General Graphs

Although it was originally designed for acyclic graphical models, it was found
that the BP can be used in general graphs. The algorithm is then called “loopy”
BP. Although the algorithm remains the same, initialization and update schedul-
ing must be adjusted slightly compared with the one used for trees.

In Loopy BP, one initializes all variable messages to 1 and updates all
messages simultaneously (typically) at every iteration. One method of exact
marginalization in general graphs is called the junction tree algorithm, which
is simply belief propagation on a modified graph guaranteed to be a tree. The
basic premise is to eliminate cycles by clustering them into single nodes.

2.1.1 Loopy Belief Propagation for Pairwise Factor Graphs

Let us formulate the loopy BP for the factor graph G = (V,E) in Figure 1. The
joint probability can be written in terms of node and edge potentials:

P (x) ⇡
Y

v2V

f

v

(x
v

)
Y

(u,v)2E

f

u,v

(x
u

, x

v

) (9)

See Kevin’s book Chap 22 for a pseudocode of the algorithm.

3 Results

Model Learn. Alg Permutation Dev Acc Test Acc
MaxEnt LBFGS - - 78.43
MaxEnt SGD Yes 76.47 79.15*
MaxEnt SGD No 75.54 78.67

Table 1: Local Good-vs-Bad classification.
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