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Asynchronous Conversations 

•  Conversations where participants communicate with 
each other at different times. 
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•  Examples:	  	  
o  Emails	  
o  Blogs	  	  
o  Forums	  
o  TwiKer	  
o  Facebook	  



The Task: Speech Act Recognition in 
Asynchronous Conversations 
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C1	  

My	  son	  wish	  to	  do	  his	  bachelor	  degree	  in	  Mechanical	  Engineering	  in	  an	  
affordable	  Canadian	  university.	  

The	  info.	  available	  in	  the	  net	  and	  the	  people	  who	  wish	  to	  offer	  services	  are	  too	  
many	  and	  some	  are	  misleading.	  

The	  preliminary	  prepara?ons,eligibility,the	  require	  funds	  etc.,	  are	  some	  of	  the	  
issues	  which	  I	  wish	  to	  know	  from	  any	  panel	  members	  of	  this	  forum	  who	  …	  

C2	  
..	  take	  a	  list	  of	  canadian	  universi?es	  and	  then	  create	  a	  table	  and	  insert	  all	  
the	  relevant	  info.	  by	  reading	  each	  and	  every	  program	  info.	  on	  the	  web.	  

Without	  doing	  a	  research	  my	  advice	  would	  be	  to	  apply	  to	  UVIC	  ..	  for	  the	  
following	  reasons	  ..	  

snakyy21:	  UVIC	  is	  a	  short	  form	  of?	  I	  	  have	  already	  started	  researching	  for	  my	  
brother	  and	  found	  ``College	  of	  North	  Atlan?c''	  and	  ..	  

C3	  

thank	  you	  for	  sharing	  useful	  ?ps	  	  will	  follow	  your	  advise.	  C5	  

..	  

ST	  

	  Q	  

	  P	  

ST	  

SU	  

SU	  

	  Q	  



Contributions 

1)	  Sentence	  representa:on	  
•  Exi:ng	  methods	  use	  bag-‐of-‐ngrams	  
•  Should	  consider	  sentence	  structure	  
•  Our	  solu:on:	  sequen:al	  LSTM	  
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2)	  Conversa:onal	  dependencies	  	  
•  Exi:ng	  methods	  usually	  classify	  each	  sentence	  locally	  	  
•  Should	  consider	  dependencies	  inside	  and	  across	  comments	  
•  Our	  solu:on:	  structured	  models	  

3)	  A	  new	  corpus	  	  
•  Forum	  conversa:ons	  
•  Annotated	  with	  standard	  tagset	  



Outline 

16-‐08-‐06	   ACL-‐2016	   5	  

•  Mo:va:on	  
•  Our	  Approach	  

o  Sentence	  representa:on	  using	  LSTMs	  
o  Condi:onal	  structured	  models	  

•  Corpora	  
o  Exis:ng	  datasets	  
o  New	  forum	  corpus	  

•  Experiments	  &	  Analysis	  
o  Effec:veness	  of	  LSTM	  RNNs	  
o  Effec:veness	  of	  CRFs	  

•  Conclusion	  &	  future	  work	  



Our Approach 
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Lookup	  layer	  

LSTM	  layer	  

s1	  

Word	  tokens	  

s1	  
1	  

s2	  
1	   2	  

Step	  1:	  LSTM	  for	  speech	  act	  classifica:on	  &	  sentence	  encoding	  

y1	  1	   y2	  1	   y1	  2	  
1	  z2	  1	  z1	   2	  z1	  1	  z1	   1	  z2	   2	  z1	  

•  Considers	  word	  order	  in	  a	  sentence	  
•  Does	  not	  consider	  the	  interdependencies	  between	  sentences.	  



Our Approach 
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Step	  2:	  Conversa:onal	  dependencies	  with	  structured	  models	  	  	  

y1	  1	   y2	  
1	  

y1	  2	  

1	  z2	  

1	  z1	  
2	  z1	  

1	  z1	  

1	  z2	  

2	  z1	  

Fully-‐connected	  graph	  

•  Experimented	  with	  various	  graph	  structures	  



 Conditional Structured Model 

8	  

zi	  
zk	  

zj	  yi	  
yk	  

yj	  

where
�!
hT and

 �
hT are the encoded vectors summa-

rizing the past and the future, respectively.

2.2 Conditional Structured Model
Given the vector representation of the sentences in
an asynchronous conversation, we explore two dif-
ferent approaches to learn classification functions.
The first and the traditional approach is to learn
a local classifier ignoring the structure in the out-
put and to use it for predicting the label of each
sentence separately. This is the approach we took
above when we fed the output layer of the LSTM
RNN with the sentence-level embeddings. How-
ever, this approach does not model the conversa-
tional dependency (e.g., adjacency relations be-
tween question-answer and request-accept pairs).

The second approach, which we adopt in this
paper, is to model the dependencies between the
output variables (labels) while learning the clas-
sification functions jointly by optimizing a global
performance criterion. We represent each conver-
sation by a graph G=(V,E). Each node i2V is
associated with an input vector zi = z

n
m, repre-

senting the features of the sentence snm, and an out-
put variable yi2{1, 2, · · · ,K}, representing the
class label. Similarly, each edge (i, j)2E is as-
sociated with an input feature vector �(zi, zj), de-
rived from the node-level features, and an output
variable yi,j2{1, 2, · · · , L}, representing the state
transitions for the pair of nodes. We define the fol-
lowing conditional joint distribution:

p(y|v,w, z) =
1

Z(v,w, z)
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where  n and  e are node and the edge factors,
and Z(.) is the global normalization constant that
ensures a valid probability distribution. We use a
log-linear representation for the factors:
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where �(.) is a feature vector derived from the in-
puts and the labels. This model is essentially a
pairwise conditional random field or PCRF (Mur-
phy, 2012). The global normalization allows CRFs
to surmount the so-called label bias problem (Laf-
ferty et al., 2001), allowing them to take long-
range interactions into account. The log likelihood
for one data point (z,y) (i.e., a conversation) is:

f(✓) =
X

i2V

v

T�(y
i

, z) +
X

(i,j)2E

w

T�(y
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, z)
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This objective is convex, so we can use gradient-
based methods to find the global optimum. The
gradients have the following form:

f 0
(v) =

X

i2V

�(y
i

, z)� E[�(y
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f 0
(w) =

X
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�(y
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, z)] (12)

where E[�(.)] denote the expected feature vector.

Training and Inference Traditionally, CRFs
have been trained using offline methods like
limited-memory BFGS (Murphy, 2012). Online
training of CRFs using stochastic gradient de-
scent (SGD) was proposed by Vishwanathan et al.
(2006). Since RNNs are trained with online meth-
ods, to compare our two methods, we use SGD
to train our CRFs. Algorithm 1 in the Appendix
gives a pseudocode of the training procedure.

We use Belief Propagation or BP (Pearl, 1988)
for inference in our graphical models. BP is guar-
anteed to converge to an exact solution if the graph
is a tree. However, exact inference is intractable
for graphs with loops. Despite this, it has been ad-
vocated by Pearl (1988) to use BP in loopy graphs
as an approximation; see also (Murphy, 2012),
page 768. The algorithm is then called “loopy”
BP, or LBP. Although LBP gives approximate so-
lutions for general graphs, it often works well
in practice (Murphy et al., 1999), outperforming
other methods such as mean field (Weiss, 2001).

Variations of Graph Structures One of the
main advantages of our pairwise CRF is that
we can define this model over arbitrary graph
structures, which allows us to capture conver-
sational dependencies at various levels. We
distinguish between two types of dependencies:
(i) intra-comment, which defines how the labels
of the sentences in a comment are connected; and
(ii) across-comment, which defines how the labels
of the sentences across comments are connected.

Table 1 summarizes the connection types that
we have explored in our models. Each configu-
ration of intra- and across- connections yields a
different pairwise CRF model. Figure 3 shows
four such CRFs with three comments — C1 be-
ing the first comment, and Ci and Cj being two
other comments in the conversation.
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•  Learn	  a	  joint	  model	  with	  global	  normaliza:on	  	  

•  Node	  poten:al:	  

•  Edge	  poten:al:	  

•  The	  model:	  
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log-linear representation for the factors:
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where �(.) is a feature vector derived from the in-
puts and the labels. This model is essentially a
pairwise conditional random field or PCRF (Mur-
phy, 2012). The global normalization allows CRFs
to surmount the so-called label bias problem (Laf-
ferty et al., 2001), allowing them to take long-
range interactions into account. The log likelihood
for one data point (z,y) (i.e., a conversation) is:
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This objective is convex, so we can use gradient-
based methods to find the global optimum. The
gradients have the following form:

f 0
(v) =

X

i2V

�(y
i

, z)� E[�(y
i

, z)] (11)

f 0
(w) =

X

(i,j)2E

�(y
i,j

, z)� E[�(y
i,j

, z)] (12)

where E[�(.)] denote the expected feature vector.

Training and Inference Traditionally, CRFs
have been trained using offline methods like
limited-memory BFGS (Murphy, 2012). Online
training of CRFs using stochastic gradient de-
scent (SGD) was proposed by Vishwanathan et al.
(2006). Since RNNs are trained with online meth-
ods, to compare our two methods, we use SGD
to train our CRFs. Algorithm 1 in the Appendix
gives a pseudocode of the training procedure.

We use Belief Propagation or BP (Pearl, 1988)
for inference in our graphical models. BP is guar-
anteed to converge to an exact solution if the graph
is a tree. However, exact inference is intractable
for graphs with loops. Despite this, it has been ad-
vocated by Pearl (1988) to use BP in loopy graphs
as an approximation; see also (Murphy, 2012),
page 768. The algorithm is then called “loopy”
BP, or LBP. Although LBP gives approximate so-
lutions for general graphs, it often works well
in practice (Murphy et al., 1999), outperforming
other methods such as mean field (Weiss, 2001).

Variations of Graph Structures One of the
main advantages of our pairwise CRF is that
we can define this model over arbitrary graph
structures, which allows us to capture conver-
sational dependencies at various levels. We
distinguish between two types of dependencies:
(i) intra-comment, which defines how the labels
of the sentences in a comment are connected; and
(ii) across-comment, which defines how the labels
of the sentences across comments are connected.

Table 1 summarizes the connection types that
we have explored in our models. Each configu-
ration of intra- and across- connections yields a
different pairwise CRF model. Figure 3 shows
four such CRFs with three comments — C1 be-
ing the first comment, and Ci and Cj being two
other comments in the conversation.
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page 768. The algorithm is then called “loopy”
BP, or LBP. Although LBP gives approximate so-
lutions for general graphs, it often works well
in practice (Murphy et al., 1999), outperforming
other methods such as mean field (Weiss, 2001).

Variations of Graph Structures One of the
main advantages of our pairwise CRF is that
we can define this model over arbitrary graph
structures, which allows us to capture conver-
sational dependencies at various levels. We
distinguish between two types of dependencies:
(i) intra-comment, which defines how the labels
of the sentences in a comment are connected; and
(ii) across-comment, which defines how the labels
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Table 1 summarizes the connection types that
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Tag Connection type Applicable to

NO No connection between nodes intra & across
LC Linear chain connection intra & across
FC Fully connected intra & across
FC1 Fully connected with first comment only across
LC1 Linear chain with first comment only across

Table 1: Connection types in CRF models.

(a) NO-NO (MaxEnt) (b) LC-LC

(c) LC-LC1 (d) LC-FC1

Figure 3: CRFs over different graph structures.

Figure 3a shows the structure for NO-NO con-
figuration, where there is no link between nodes of
both intra- and across- comments. In this setting,
the CRF model is equivalent to MaxEnt. Figure
3b shows the structure for LC-LC, where there
are linear chain relations between nodes of both
intra- and across- comments. The linear chain
across comments refers to the structure, where
the last sentence of each comment is connected
to the first sentence of the comment that comes
next in the temporal order (i.e., posting time). Fig-
ures 3c shows the CRF for LC-LC1, where sen-
tences inside a comment have linear chain connec-
tions, and the last sentence of the first comment is
connected to the first sentence of the other com-
ments. Similarly, Figure 3d shows the graph struc-
ture for LC-FC1 configuration, where sentences
inside comments have linear chain connections,
and sentences of the first comment are fully con-
nected with the sentences of the other comments.

3 Corpora

There exist large corpora of utterances annotated
with speech acts in synchronous spoken domains,
e.g., Switchboard-DAMSL or SWBD (Jurafsky et
al., 1997) and Meeting Recorder Dialog Act or
MRDA (Dhillon et al., 2004). However, such large
corpus does not exist in asynchronous domains.
Some prior work (Cohen et al., 2004; Ravi and
Kim, 2007; Feng et al., 2006; Bhatia et al., 2014)
tackles the task at the comment level, and uses

TA BC3
Total number of conv. 200 39
Avg. nb of comments per conv. 4.02 6.54
Avg. nb of sentences per conv. 18.56 34.15
Avg. nb of words per sentence 14.90 12.61

Table 2: Statistics about TA and BC3 corpora.

Tag Description TA BC3 MRDA
SU Suggestion 7.71% 5.48% 5.97%
R Response 2.4% 3.75% 15.63%
Q Question 14.71% 8.41% 8.62%
P Polite 9.57% 8.63% 3.77%
ST Statement 65.62% 73.72% 66.00%

Table 3: Distribution of speech acts in our corpora.

task-specific tagsets. In contrast, in this work we
are interested in identifying speech acts at the sen-
tence level, and also using a standard tagset like
the ones defined in SWBD and MRDA.

More recent studies attempt to solve the task at
the sentence level. Jeong et al. (2009) first created
a dataset of TripAdvisor (TA) forum conversations
annotated with the standard 12 act types defined in
MRDA. They also remapped the BC3 email cor-
pus (Ulrich et al., 2008) according to this tagset.
Table 10 in the Appendix presents the tags and
their relative frequency in the two datasets. Subse-
quent studies (Joty et al., 2011; Tavafi et al., 2013;
Oya and Carenini, 2014) use these datasets. We
also use these datasets in our work. Table 2 shows
some basic statistics about these datasets. On aver-
age, BC3 conversations are longer than TA in both
number of comments and number of sentences.

Since these datasets are relatively small in size,
we group the 12 acts into 5 coarser classes to
learn a reasonable classifier.1 More specifically,
all the question types are grouped into one gen-
eral class Question, all response types into Re-
sponse, and appreciation and polite mechanisms
into Polite class. Also since deep neural models
like LSTM RNNs require a lot of training data,
we also utilize the MRDA meeting corpus. Ta-
ble 3 shows the label distribution of the resultant
datasets. Statement is the most dominant class,
followed by Question, Polite and Suggestion.

QC3 Conversational Corpus Since both TA
and BC3 are quite small to make a general com-
ment about model performance in asynchronous

1Some prior work (Tavafi et al., 2013; Oya and Carenini,
2014) also took the same approach.
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figuration, where there is no link between nodes of
both intra- and across- comments. In this setting,
the CRF model is equivalent to MaxEnt. Figure
3b shows the structure for LC-LC, where there
are linear chain relations between nodes of both
intra- and across- comments. The linear chain
across comments refers to the structure, where
the last sentence of each comment is connected
to the first sentence of the comment that comes
next in the temporal order (i.e., posting time). Fig-
ures 3c shows the CRF for LC-LC1, where sen-
tences inside a comment have linear chain connec-
tions, and the last sentence of the first comment is
connected to the first sentence of the other com-
ments. Similarly, Figure 3d shows the graph struc-
ture for LC-FC1 configuration, where sentences
inside comments have linear chain connections,
and sentences of the first comment are fully con-
nected with the sentences of the other comments.

3 Corpora

There exist large corpora of utterances annotated
with speech acts in synchronous spoken domains,
e.g., Switchboard-DAMSL or SWBD (Jurafsky et
al., 1997) and Meeting Recorder Dialog Act or
MRDA (Dhillon et al., 2004). However, such large
corpus does not exist in asynchronous domains.
Some prior work (Cohen et al., 2004; Ravi and
Kim, 2007; Feng et al., 2006; Bhatia et al., 2014)
tackles the task at the comment level, and uses

TA BC3
Total number of conv. 200 39
Avg. nb of comments per conv. 4.02 6.54
Avg. nb of sentences per conv. 18.56 34.15
Avg. nb of words per sentence 14.90 12.61

Table 2: Statistics about TA and BC3 corpora.

Tag Description TA BC3 MRDA
SU Suggestion 7.71% 5.48% 5.97%
R Response 2.4% 3.75% 15.63%
Q Question 14.71% 8.41% 8.62%
P Polite 9.57% 8.63% 3.77%
ST Statement 65.62% 73.72% 66.00%

Table 3: Distribution of speech acts in our corpora.

task-specific tagsets. In contrast, in this work we
are interested in identifying speech acts at the sen-
tence level, and also using a standard tagset like
the ones defined in SWBD and MRDA.

More recent studies attempt to solve the task at
the sentence level. Jeong et al. (2009) first created
a dataset of TripAdvisor (TA) forum conversations
annotated with the standard 12 act types defined in
MRDA. They also remapped the BC3 email cor-
pus (Ulrich et al., 2008) according to this tagset.
Table 11 in the Appendix presents the tags and
their relative frequency in the two datasets. Subse-
quent studies (Joty et al., 2011; Tavafi et al., 2013;
Oya and Carenini, 2014) use these datasets. We
also use these datasets in our work. Table 4 shows
some basic statistics about these datasets. On aver-
age, BC3 conversations are longer than TA in both
number of comments and number of sentences.

Since these datasets are relatively small in size,
we group the 12 acts into 5 coarser classes to
learn a reasonable classifier.1 More specifically,
all the question types are grouped into one gen-
eral class Question, all response types into Re-
sponse, and appreciation and polite mechanisms
into Polite class. Also since deep neural models
like LSTM RNNs require a lot of training data,
we also utilize the MRDA meeting corpus. Ta-
ble 3 shows the label distribution of the resultant
datasets. Statement is the most dominant class,
followed by Question, Polite and Suggestion.

QC3 Conversational Corpus Since both TA
and BC3 are quite small to make a general com-
ment about model performance in asynchronous

1Some prior work (Tavafi et al., 2013; Oya and Carenini,
2014) also took the same approach.
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A Appendix

Algorithm 1: Online learning algorithm for
conditional random fields

1. Initialize the model parameters v and w;
2. repeat

for each thread G = (V,E) do
a. Compute node and edge factors
 n(yi|z,v) and  e(yi,j |z,w);
b. Infer node and edge marginals
using sum-product loopy BP;
c. Update: v = v � ⌘

1
|V |f

0(v);
d. Update: w = w � ⌘

1
|E|f

0(w) ;
end

until convergence;

Tag Description BC3 TA
S Statement 69.56% 65.62%
P Polite mechanism 6.97% 9.11%
QY Yes-no question 6.75% 8.33%
AM Action motivator 6.09% 7.71%
QW Wh-question 2.29% 4.23%
A Accept response 2.07% 1.10%
QO Open-ended question 1.32% 0.92%
AA Acknowledge and appreciate 1.24% 0.46%
QR Or/or-clause question 1.10% 1.16%
R Reject response 1.06% 0.64%
U Uncertain response 0.79% 0.65%
QH Rhetorical question 0.75% 0.08%

Table 10: Dialog act tags and their relative fre-
quencies in the BC3 and TA corpora.
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Tag Connection type Applicable to

NO No connection between nodes intra & across
LC Linear chain connection intra & across
FC Fully connected intra & across
FC1 Fully connected with first comment only across
LC1 Linear chain with first comment only across

Table 1: Connection types in CRF models.

(a) NO-NO (MaxEnt) (b) LC-LC

(c) LC-LC1 (d) LC-FC1

Figure 3: CRFs over different graph structures.

Figure 3a shows the structure for NO-NO con-
figuration, where there is no link between nodes of
both intra- and across- comments. In this setting,
the CRF model is equivalent to MaxEnt. Figure
3b shows the structure for LC-LC, where there
are linear chain relations between nodes of both
intra- and across- comments. The linear chain
across comments refers to the structure, where
the last sentence of each comment is connected
to the first sentence of the comment that comes
next in the temporal order (i.e., posting time). Fig-
ures 3c shows the CRF for LC-LC1, where sen-
tences inside a comment have linear chain connec-
tions, and the last sentence of the first comment is
connected to the first sentence of the other com-
ments. Similarly, Figure 3d shows the graph struc-
ture for LC-FC1 configuration, where sentences
inside comments have linear chain connections,
and sentences of the first comment are fully con-
nected with the sentences of the other comments.

3 Corpora

There exist large corpora of utterances annotated
with speech acts in synchronous spoken domains,
e.g., Switchboard-DAMSL or SWBD (Jurafsky et
al., 1997) and Meeting Recorder Dialog Act or
MRDA (Dhillon et al., 2004). However, such large
corpus does not exist in asynchronous domains.
Some prior work (Cohen et al., 2004; Ravi and
Kim, 2007; Feng et al., 2006; Bhatia et al., 2014)
tackles the task at the comment level, and uses

TA BC3
Total number of conv. 200 39
Avg. nb of comments per conv. 4.02 6.54
Avg. nb of sentences per conv. 18.56 34.15
Avg. nb of words per sentence 14.90 12.61

Table 2: Statistics about TA and BC3 corpora.

Tag Description TA BC3 MRDA
SU Suggestion 7.71% 5.48% 5.97%
R Response 2.4% 3.75% 15.63%
Q Question 14.71% 8.41% 8.62%
P Polite 9.57% 8.63% 3.77%
ST Statement 65.62% 73.72% 66.00%

Table 3: Distribution of speech acts in our corpora.

task-specific tagsets. In contrast, in this work we
are interested in identifying speech acts at the sen-
tence level, and also using a standard tagset like
the ones defined in SWBD and MRDA.

More recent studies attempt to solve the task at
the sentence level. Jeong et al. (2009) first created
a dataset of TripAdvisor (TA) forum conversations
annotated with the standard 12 act types defined in
MRDA. They also remapped the BC3 email cor-
pus (Ulrich et al., 2008) according to this tagset.
Table 10 in the Appendix presents the tags and
their relative frequency in the two datasets. Subse-
quent studies (Joty et al., 2011; Tavafi et al., 2013;
Oya and Carenini, 2014) use these datasets. We
also use these datasets in our work. Table 2 shows
some basic statistics about these datasets. On aver-
age, BC3 conversations are longer than TA in both
number of comments and number of sentences.

Since these datasets are relatively small in size,
we group the 12 acts into 5 coarser classes to
learn a reasonable classifier.1 More specifically,
all the question types are grouped into one gen-
eral class Question, all response types into Re-
sponse, and appreciation and polite mechanisms
into Polite class. Also since deep neural models
like LSTM RNNs require a lot of training data,
we also utilize the MRDA meeting corpus. Ta-
ble 3 shows the label distribution of the resultant
datasets. Statement is the most dominant class,
followed by Question, Polite and Suggestion.

QC3 Conversational Corpus Since both TA
and BC3 are quite small to make a general com-
ment about model performance in asynchronous

1Some prior work (Tavafi et al., 2013; Oya and Carenini,
2014) also took the same approach.
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NO No connection between nodes intra & across
LC Linear chain connection intra & across
FC Fully connected intra & across
FC1 Fully connected with first comment only across
LC1 Linear chain with first comment only across

Table 1: Connection types in CRF models.

(a) NO-NO (MaxEnt) (b) LC-LC

(c) LC-LC1 (d) LC-FC1

Figure 3: CRFs over different graph structures.

Figure 3a shows the structure for NO-NO con-
figuration, where there is no link between nodes of
both intra- and across- comments. In this setting,
the CRF model is equivalent to MaxEnt. Figure
3b shows the structure for LC-LC, where there
are linear chain relations between nodes of both
intra- and across- comments. The linear chain
across comments refers to the structure, where
the last sentence of each comment is connected
to the first sentence of the comment that comes
next in the temporal order (i.e., posting time). Fig-
ures 3c shows the CRF for LC-LC1, where sen-
tences inside a comment have linear chain connec-
tions, and the last sentence of the first comment is
connected to the first sentence of the other com-
ments. Similarly, Figure 3d shows the graph struc-
ture for LC-FC1 configuration, where sentences
inside comments have linear chain connections,
and sentences of the first comment are fully con-
nected with the sentences of the other comments.

3 Corpora

There exist large corpora of utterances annotated
with speech acts in synchronous spoken domains,
e.g., Switchboard-DAMSL or SWBD (Jurafsky et
al., 1997) and Meeting Recorder Dialog Act or
MRDA (Dhillon et al., 2004). However, such large
corpus does not exist in asynchronous domains.
Some prior work (Cohen et al., 2004; Ravi and
Kim, 2007; Feng et al., 2006; Bhatia et al., 2014)
tackles the task at the comment level, and uses

TA BC3
Total number of conv. 200 39
Avg. nb of comments per conv. 4.02 6.54
Avg. nb of sentences per conv. 18.56 34.15
Avg. nb of words per sentence 14.90 12.61

Table 2: Statistics about TA and BC3 corpora.

Tag Description TA BC3 MRDA
SU Suggestion 7.71% 5.48% 5.97%
R Response 2.4% 3.75% 15.63%
Q Question 14.71% 8.41% 8.62%
P Polite 9.57% 8.63% 3.77%
ST Statement 65.62% 73.72% 66.00%

Table 3: Distribution of speech acts in our corpora.

task-specific tagsets. In contrast, in this work we
are interested in identifying speech acts at the sen-
tence level, and also using a standard tagset like
the ones defined in SWBD and MRDA.

More recent studies attempt to solve the task at
the sentence level. Jeong et al. (2009) first created
a dataset of TripAdvisor (TA) forum conversations
annotated with the standard 12 act types defined in
MRDA. They also remapped the BC3 email cor-
pus (Ulrich et al., 2008) according to this tagset.
Table 10 in the Appendix presents the tags and
their relative frequency in the two datasets. Subse-
quent studies (Joty et al., 2011; Tavafi et al., 2013;
Oya and Carenini, 2014) use these datasets. We
also use these datasets in our work. Table 2 shows
some basic statistics about these datasets. On aver-
age, BC3 conversations are longer than TA in both
number of comments and number of sentences.

Since these datasets are relatively small in size,
we group the 12 acts into 5 coarser classes to
learn a reasonable classifier.1 More specifically,
all the question types are grouped into one gen-
eral class Question, all response types into Re-
sponse, and appreciation and polite mechanisms
into Polite class. Also since deep neural models
like LSTM RNNs require a lot of training data,
we also utilize the MRDA meeting corpus. Ta-
ble 3 shows the label distribution of the resultant
datasets. Statement is the most dominant class,
followed by Question, Polite and Suggestion.

QC3 Conversational Corpus Since both TA
and BC3 are quite small to make a general com-
ment about model performance in asynchronous

1Some prior work (Tavafi et al., 2013; Oya and Carenini,
2014) also took the same approach.

•  Synchronous	  domain	  
o  Mee:ng	  Recorder	  

Dialog	  Act	  or	  MRDA	  
(Dhillon	  et	  al.	  2004)	  

	  

•  Asynchronous	  domains	  
o  Trip	  Advisor	  forum	  

(Jeong	  et	  al.	  2009)	  
o  BC3	  email	  corpus	  

(Ulrich	  et	  al.	  2008)	  
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•  QC3	  conversa:onal	  corpus	  
o  50	  conversa:ons	  from	  Qatar	  Living	  forum.	  

Speech Act Distribution 

Suggestion 17.38% 0.86
Response 5.24% 0.43
Question 12.59% 0.87
Polite 6.13% 0.75
Statement 58.66% 0.78

Table 4: Corpus statistics for QC3.

conversation, we have created a new dataset called
Qatar Computing Conversational Corpus or QC3.

We selected 50 conversations from a popular
community question answering site named Qatar
Living2 for our annotation. We used 3 conversa-
tions for our pilot study and used the remaining 47
for the actual study. The resultant corpus on aver-
age contains 13.32 comments and 33.28 sentences
per conversation, and 19.78 words per sentence.

Two native speakers of English annotated each
conversation using a web-based annotation frame-
work. They were asked to annotate each sentence
with the most appropriate speech act tag from the
list of 5 speech act types. Since this task is not
always obvious, we gave them detailed annota-
tion guidelines with real examples. We use Co-
hens Kappa  to measure the agreement between
the annotators. Table 4 presents the distribution of
the speech acts and their respective  values.After
Statement, Suggestion is the most frequent class,
followed by Question and Polite. The  varies
from 0.43 (for Response) to 0.87 (for Question).

Finally, in order to create a consolidated dataset,
we collected the disagreements and employed a
third annotator to resolve those cases.

4 Experiments and Analysis

In this section we present our experimental set-
tings, results and analysis. We evaluate our mod-
els on the two forum corpora QC3 and TA. For
performance comparison, we use both accuracy
and macro-averaged F1 score. Accuracy gives the
overall performance of a classifier but could be bi-
ased to most populated ones. Macro-averaged F1

weights equally every class and is not influenced
by class imbalance. Statistical significance tests
are done using an approximate randomization test
based on the accuracy.3 We used SIGF V.2 (Padó,
2006) with 10,000 iterations.

2http://www.qatarliving.com/
3Significance tests operate on individual instances rather

than individual classes; thus not applicable for macro F1.

Corpora Type Train Dev. Test

QC3 asynchronous 1252 157 156
TA asynchronous 2968 372 371
BC3 asynchronous 1065 34 133
MRDA synchronous 50865 8366 10492
Total asyn. + sync. 56150 8929 11152

Table 5: Number of sentences in train, develop-
ment and test sets for different datasets.

Because of the noise and informal nature of
conversational texts, we performed a series of pre-
processing steps. We normalize all characters to
their lower-cased forms, truncate elongations to
two characters, spell out every digit and URL.
We further tokenized the texts using the CMU
TweetNLP tool (Gimpel et al., 2011).

In the following, we first demonstrate the effec-
tiveness of LSTM RNNs for learning representa-
tions of sentences automatically to identify their
speech acts. Then in subsection 4.2, we show the
usefulness of pairwise CRFs for capturing conver-
sational dependencies in speech act recognition.

4.1 Effectiveness of LSTM RNNs
To show the effectiveness of LSTMs for learn-
ing sentence representations, we split each of our
asynchronous corpora randomly into 70% sen-
tences for training, 10% for development, and
20% for testing. For MRDA, we use the same
train-test-dev split as Jeong et al. (2009). Table
5 summarizes the resultant datasets.

We compare the performance of LSTMs with
that of MaxEnt (ME) and Multi-layer Perceptron
(MLP) with one hidden layer.4 Both ME and MLP
were fed with the bag-of-word (BOW) represen-
tations of the sentence, i.e., vectors containing bi-
nary values indicating the presence or absence of
a word in the training set vocabulary.

We train the models by optimizing the cross en-
tropy using the gradient-based online learning al-
gorithm ADAM (Kingma and Ba, 2014).5 The
learning rate and other parameters were set to the
values as suggested by the authors. To avoid over-
fitting, we use dropout (Srivastava et al., 2014) of
hidden units and early stopping based on the loss
on the development set.6 Maximum number of
epochs was set to 25 for RNNs and 100 for ME
and MLP. We experimented with {0.0, 0.2, 0.4}

4More hidden layers worsened the performance.
5Other algorithms (SGD, Adagrad) gave similar results.
6l1 and l2 regularization on weights did not work well.

Total number of conv. 50
Avg. nb of comments per conv. 13.32
Avg. nb of sentences per conv. 33.28
Avg. nb of words per sentence 19.78

Table 4: Statistics about QC3 corpus.

Speech Act Distribution 

Suggestion 17.38% 0.86
Response 5.24% 0.43
Question 12.59% 0.87
Polite 6.13% 0.75
Statement 58.66% 0.78

Table 5: Corpus statistics for QC3.

conversation, we have created a new dataset called
Qatar Computing Conversational Corpus or QC3.

We selected 50 conversations from a popular
community question answering site named Qatar
Living2 for our annotation. We used 3 conversa-
tions for our pilot study and used the remaining 47
for the actual study. The resultant corpus on aver-
age contains 13.32 comments and 33.28 sentences
per conversation, and 19.78 words per sentence.

Two native speakers of English annotated each
conversation using a web-based annotation frame-
work. They were asked to annotate each sentence
with the most appropriate speech act tag from the
list of 5 speech act types. Since this task is not
always obvious, we gave them detailed annota-
tion guidelines with real examples. We use Co-
hens Kappa  to measure the agreement between
the annotators. Table 5 presents the distribution of
the speech acts and their respective  values.After
Statement, Suggestion is the most frequent class,
followed by Question and Polite. The  varies
from 0.43 (for Response) to 0.87 (for Question).

Finally, in order to create a consolidated dataset,
we collected the disagreements and employed a
third annotator to resolve those cases.

4 Experiments and Analysis

In this section we present our experimental set-
tings, results and analysis. We evaluate our mod-
els on the two forum corpora QC3 and TA. For
performance comparison, we use both accuracy
and macro-averaged F1 score. Accuracy gives the
overall performance of a classifier but could be bi-
ased to most populated ones. Macro-averaged F1

2http://www.qatarliving.com/

Corpora Type Train Dev. Test

QC3 asynchronous 1252 157 156
TA asynchronous 2968 372 371
BC3 asynchronous 1065 34 133
MRDA synchronous 50865 8366 10492
Total asyn. + sync. 56150 8929 11152

Table 6: Number of sentences in train, develop-
ment and test sets for different datasets.

weights equally every class and is not influenced
by class imbalance. Statistical significance tests
are done using an approximate randomization test
based on the accuracy.3 We used SIGF V.2 (Padó,
2006) with 10,000 iterations.

Because of the noise and informal nature of
conversational texts, we performed a series of pre-
processing steps. We normalize all characters to
their lower-cased forms, truncate elongations to
two characters, spell out every digit and URL.
We further tokenized the texts using the CMU
TweetNLP tool (Gimpel et al., 2011).

In the following, we first demonstrate the effec-
tiveness of LSTM RNNs for learning representa-
tions of sentences automatically to identify their
speech acts. Then in subsection 4.2, we show the
usefulness of pairwise CRFs for capturing conver-
sational dependencies in speech act recognition.

4.1 Effectiveness of LSTM RNNs

To show the effectiveness of LSTMs for learn-
ing sentence representations, we split each of our
asynchronous corpora randomly into 70% sen-
tences for training, 10% for development, and
20% for testing. For MRDA, we use the same
train-test-dev split as Jeong et al. (2009). Table
6 summarizes the resultant datasets.

We compare the performance of LSTMs with
that of MaxEnt (ME) and Multi-layer Perceptron
(MLP) with one hidden layer.4 Both ME and MLP
were fed with the bag-of-word (BOW) represen-
tations of the sentence, i.e., vectors containing bi-
nary values indicating the presence or absence of
a word in the training set vocabulary.

We train the models by optimizing the cross en-
tropy using the gradient-based online learning al-
gorithm ADAM (Kingma and Ba, 2014).5 The
learning rate and other parameters were set to the

3Significance tests operate on individual instances rather
than individual classes; thus not applicable for macro F1.

4More hidden layers worsened the performance.
5Other algorithms (SGD, Adagrad) gave similar results.
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•  Data split: 
o  Asynchronous: 80% train, 10% test, 10% valid. 
o  MRDA: Same as Jenog et al. (2009) 

16-‐08-‐07	   ACL-‐2016	   15	  

•  Baselines: 
o  ME: MaxEnt with BoW representation 
o  MLP: One hidden layer MLP with BoW representation 

•  LSTM settings: 
o  ADAM (Kingma & Ba, 2014) learning alg.  
o  Dropout & Early stopping. 
o  Random & Word2Vec initialization.  
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QC3 TA MRDA
Testset 5 folds Testset 5 folds 5 classes 12 classes

Jeong et al. (ng) - - - - - 57.53 (83.30)
Jeong et al. (All) - - - - - 59.04 (83.49)

ME 55.12 (75.64) 50.23 (71.37) 61.4 (85.44) 59.23 (84.85) 65.25 (83.95) 57.79 (82.84)
MLP 61.30 (74.36) 54.57 (71.63) 68.17 (85.98) 62.41 (85.02) 68.12 (84.24) 58.19 (83.24)

U-LSTM
r

51.57 (73.55) 48.64 (65.94) 56.54 (83.24) 56.39 (83.83) 71.29 (85.38) 58.72 (83.34)
U-LSTM

p

49.41 (70.97) 50.26 (65.62) 63.12(83.78) 59.10 (83.13) 72.32 (85.19) 59.05 (84.06)

B-LSTM
r

50.75 (72.26) 48.41 (66.19) 58.88 (82.97) 56.23 (83.34) 71.69 (85.62) 58.33 (83.49)
B-LSTM

p

53.22 (71.61) 51.59 (68.50) 60.73 (82.97) 59.68 (84.07) 72.02 (85.33) 60.12 (84.46*)

Table 6: Macro-averaged F1 and raw accuracy (in parenthesis) for baselines and LSTM variants on the
testset and 5-fold splits of different corpora. For MRDA, we use the same train-test-dev split as (Jeong
et al., 2009). Accuracy significantly superior to state-of-the-art is marked with *.

QC3 (Testset) TA (Testset)

ME 50.64 (71.15) 72.49 (84.10)
MLP 58.60 (74.36) 73.07 (86.29)
B-LSTM

p

66.40 (80.65*) 73.14 (87.01*)

Table 7: Results on CAT dataset.

Train Dev Test

QC3 38 (1332) 4 (111) 5 (122)
TA 160 (2957) 20 (310) 20 (444)
Total 197 (4289) 24 (421) 25 (566)

Table 8: Setting for CON dataset. The numbers in-
side parentheses indicate the number of sentences.

opment, respectively.7 The testsets contain 5 and
20 conversations for QC3 and TA, respectively.

As baselines, we use three models: (i) MEb,
a MaxEnt using BOW representation; (ii) B-
LSTMp, which is now trained on the concatenated
set of sentences from MRDA and CON training
sets; and (iii) MEe, a MaxEnt using sentence em-
beddings extracted from the B-LSTMp, i.e., the
sentence embeddings are used as feature vectors.

We experiment with the CRF variants in Table
1. The CRFs are trained on the CON training set
using the sentence embeddings that are extracted
by applying the B-LSTMp model, as was done
with MEe. Table 9 shows our results. We notice
that CRFs generally outperform MEs in accuracy.
This indicates that there are conversational depen-
dencies between the sentences in a conversation.

When we compare between CRF variants, we
notice that the model that does not consider any
link across comments perform the worst; see CRF
(LC-NO). A simple linear chain connection be-
tween sentences in their temporal order does not

7We use the concatenated sets as train and dev. sets.

QC3 TA

ME
b

56.67 (67.21) 63.29 (84.23)
B-LSTM

p

65.15 (77.87) 66.93 (85.13)
ME

e

59.94 (77.05) 59.55 (85.14)

CRF (LC-NO) 62.20 (77.87) 60.30 (85.81)
CRF (LC-LC) 62.35 (78.69) 60.30 (85.81)
CRF (LC-LC1) 65.94 (80.33*) 61.58 (86.54)
CRF (LC-FC1) 61.18 (77.87) 60.00 (85.36)
CRF (FC-FC) 64.54 (79.51*) 61.64 (86.81*)

Table 9: Results of CRFs on CON dataset.

improve much (CRF (LC-LC)), which indicates
that the widely used linear chain CRF (Lafferty
et al., 2001) is not the most appropriate model
for capturing conversational dependencies in these
conversations. The CRF (LC-LC1) is one of the
best performing models and perform significantly
(with 99% confidence) better than B-LSTMp.8

This model considers linear chain connections be-
tween sentences inside comments and only to the
first comment. Note that both QC3 and TA are
forum sites, where participants in a conversation
interact mostly with the person who posts the first
comment asking for some information. This is in-
teresting that our model can capture this aspect.

Another interesting observation is that when we
change the above model to consider relations with
every sentence in the first comment (CRF (LC-
FC1)), this degrades the performance. This could
be due to the fact that the information seeking per-
son first explains her situation, and then asks for
the information. Others tend to respond to the re-
quested information rather than to her situation.
The CRF (FC-FC) also yields as good results as
CRF (LC-LC1). This could be attributed to the ro-
bustness of the fully-connected CRF, which learns

8Significance was computed on the concatenated testset.

•  Jeong	  et	  al.	  (All):	  using	  ME	  with	  all	  features,	  e.g.,	  n-‐gram,	  speaker,	  dependency,	  POS.	  
•  LSTMs	  and	  Jeong	  et	  al.	  (ng)	  use	  the	  same	  informa:on.	  
•  All	  LSTM	  variants	  achieve	  state-‐of-‐the-‐art	  results	  on	  MRDA.	  
•  B-‐LSTMp	  is	  significantly	  beKer	  than	  the	  best	  exis:ng	  result.	  
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QC3 TA MRDA
Testset 5 folds Testset 5 folds 5 classes 12 classes

Jeong et al. (ng) - - - - - 57.53 (83.30)
Jeong et al. (All) - - - - - 59.04 (83.49)

ME 55.12 (75.64) 50.23 (71.37) 61.4 (85.44) 59.23 (84.85) 65.25 (83.95) 57.79 (82.84)
MLP 61.30 (74.36) 54.57 (71.63) 68.17 (85.98) 62.41 (85.02) 68.12 (84.24) 58.19 (83.24)

U-LSTM
r

51.57 (73.55) 48.64 (65.94) 56.54 (83.24) 56.39 (83.83) 71.29 (85.38) 58.72 (83.34)
U-LSTM

p

49.41 (70.97) 50.26 (65.62) 63.12(83.78) 59.10 (83.13) 72.32 (85.19) 59.05 (84.06)

B-LSTM
r

50.75 (72.26) 48.41 (66.19) 58.88 (82.97) 56.23 (83.34) 71.69 (85.62) 58.33 (83.49)
B-LSTM

p

53.22 (71.61) 51.59 (68.50) 60.73 (82.97) 59.68 (84.07) 72.02 (85.33) 60.12 (84.46*)

Table 6: Macro-averaged F1 and raw accuracy (in parenthesis) for baselines and LSTM variants on the
testset and 5-fold splits of different corpora. For MRDA, we use the same train-test-dev split as (Jeong
et al., 2009). Accuracy significantly superior to state-of-the-art is marked with *.

QC3 (Testset) TA (Testset)

ME 50.64 (71.15) 72.49 (84.10)
MLP 58.60 (74.36) 73.07 (86.29)
B-LSTM

p

66.40 (80.65*) 73.14 (87.01*)

Table 7: Results on CAT dataset.

Train Dev Test

QC3 38 (1332) 4 (111) 5 (122)
TA 160 (2957) 20 (310) 20 (444)
Total 197 (4289) 24 (421) 25 (566)

Table 8: Setting for CON dataset. The numbers in-
side parentheses indicate the number of sentences.

opment, respectively.7 The testsets contain 5 and
20 conversations for QC3 and TA, respectively.

As baselines, we use three models: (i) MEb,
a MaxEnt using BOW representation; (ii) B-
LSTMp, which is now trained on the concatenated
set of sentences from MRDA and CON training
sets; and (iii) MEe, a MaxEnt using sentence em-
beddings extracted from the B-LSTMp, i.e., the
sentence embeddings are used as feature vectors.

We experiment with the CRF variants in Table
1. The CRFs are trained on the CON training set
using the sentence embeddings that are extracted
by applying the B-LSTMp model, as was done
with MEe. Table 9 shows our results. We notice
that CRFs generally outperform MEs in accuracy.
This indicates that there are conversational depen-
dencies between the sentences in a conversation.

When we compare between CRF variants, we
notice that the model that does not consider any
link across comments perform the worst; see CRF
(LC-NO). A simple linear chain connection be-
tween sentences in their temporal order does not

7We use the concatenated sets as train and dev. sets.

QC3 TA

ME
b

56.67 (67.21) 63.29 (84.23)
B-LSTM

p

65.15 (77.87) 66.93 (85.13)
ME

e

59.94 (77.05) 59.55 (85.14)

CRF (LC-NO) 62.20 (77.87) 60.30 (85.81)
CRF (LC-LC) 62.35 (78.69) 60.30 (85.81)
CRF (LC-LC1) 65.94 (80.33*) 61.58 (86.54)
CRF (LC-FC1) 61.18 (77.87) 60.00 (85.36)
CRF (FC-FC) 64.54 (79.51*) 61.64 (86.81*)

Table 9: Results of CRFs on CON dataset.

improve much (CRF (LC-LC)), which indicates
that the widely used linear chain CRF (Lafferty
et al., 2001) is not the most appropriate model
for capturing conversational dependencies in these
conversations. The CRF (LC-LC1) is one of the
best performing models and perform significantly
(with 99% confidence) better than B-LSTMp.8

This model considers linear chain connections be-
tween sentences inside comments and only to the
first comment. Note that both QC3 and TA are
forum sites, where participants in a conversation
interact mostly with the person who posts the first
comment asking for some information. This is in-
teresting that our model can capture this aspect.

Another interesting observation is that when we
change the above model to consider relations with
every sentence in the first comment (CRF (LC-
FC1)), this degrades the performance. This could
be due to the fact that the information seeking per-
son first explains her situation, and then asks for
the information. Others tend to respond to the re-
quested information rather than to her situation.
The CRF (FC-FC) also yields as good results as
CRF (LC-LC1). This could be attributed to the ro-
bustness of the fully-connected CRF, which learns

8Significance was computed on the concatenated testset.

•  Pre-‐trained	  Google	  vectors	  give	  beKer	  ini:aliza:on.	  
•  Bi-‐direc:onal	  LSTMs	  perform	  beKer	  than	  their	  unidirec:onal	  counterpart.	  
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QC3 TA MRDA
Testset 5 folds Testset 5 folds 5 classes 12 classes

Jeong et al. (ng) - - - - - 57.53 (83.30)
Jeong et al. (All) - - - - - 59.04 (83.49)

ME 55.12 (75.64) 50.23 (71.37) 61.4 (85.44) 59.23 (84.85) 65.25 (83.95) 57.79 (82.84)
MLP 61.30 (74.36) 54.57 (71.63) 68.17 (85.98) 62.41 (85.02) 68.12 (84.24) 58.19 (83.24)

U-LSTM
r

51.57 (73.55) 48.64 (65.94) 56.54 (83.24) 56.39 (83.83) 71.29 (85.38) 58.72 (83.34)
U-LSTM

p

49.41 (70.97) 50.26 (65.62) 63.12(83.78) 59.10 (83.13) 72.32 (85.19) 59.05 (84.06)

B-LSTM
r

50.75 (72.26) 48.41 (66.19) 58.88 (82.97) 56.23 (83.34) 71.69 (85.62) 58.33 (83.49)
B-LSTM

p

53.22 (71.61) 51.59 (68.50) 60.73 (82.97) 59.68 (84.07) 72.02 (85.33) 60.12 (84.46*)

Table 6: Macro-averaged F1 and raw accuracy (in parenthesis) for baselines and LSTM variants on the
testset and 5-fold splits of different corpora. For MRDA, we use the same train-test-dev split as (Jeong
et al., 2009). Accuracy significantly superior to state-of-the-art is marked with *.

QC3 (Testset) TA (Testset)

ME 50.64 (71.15) 72.49 (84.10)
MLP 58.60 (74.36) 73.07 (86.29)
B-LSTM

p

66.40 (80.65*) 73.14 (87.01*)

Table 7: Results on CAT dataset.

Train Dev Test

QC3 38 (1332) 4 (111) 5 (122)
TA 160 (2957) 20 (310) 20 (444)
Total 197 (4289) 24 (421) 25 (566)

Table 8: Setting for CON dataset. The numbers in-
side parentheses indicate the number of sentences.

opment, respectively.7 The testsets contain 5 and
20 conversations for QC3 and TA, respectively.

As baselines, we use three models: (i) MEb,
a MaxEnt using BOW representation; (ii) B-
LSTMp, which is now trained on the concatenated
set of sentences from MRDA and CON training
sets; and (iii) MEe, a MaxEnt using sentence em-
beddings extracted from the B-LSTMp, i.e., the
sentence embeddings are used as feature vectors.

We experiment with the CRF variants in Table
1. The CRFs are trained on the CON training set
using the sentence embeddings that are extracted
by applying the B-LSTMp model, as was done
with MEe. Table 9 shows our results. We notice
that CRFs generally outperform MEs in accuracy.
This indicates that there are conversational depen-
dencies between the sentences in a conversation.

When we compare between CRF variants, we
notice that the model that does not consider any
link across comments perform the worst; see CRF
(LC-NO). A simple linear chain connection be-
tween sentences in their temporal order does not

7We use the concatenated sets as train and dev. sets.

QC3 TA

ME
b

56.67 (67.21) 63.29 (84.23)
B-LSTM

p

65.15 (77.87) 66.93 (85.13)
ME

e

59.94 (77.05) 59.55 (85.14)

CRF (LC-NO) 62.20 (77.87) 60.30 (85.81)
CRF (LC-LC) 62.35 (78.69) 60.30 (85.81)
CRF (LC-LC1) 65.94 (80.33*) 61.58 (86.54)
CRF (LC-FC1) 61.18 (77.87) 60.00 (85.36)
CRF (FC-FC) 64.54 (79.51*) 61.64 (86.81*)

Table 9: Results of CRFs on CON dataset.

improve much (CRF (LC-LC)), which indicates
that the widely used linear chain CRF (Lafferty
et al., 2001) is not the most appropriate model
for capturing conversational dependencies in these
conversations. The CRF (LC-LC1) is one of the
best performing models and perform significantly
(with 99% confidence) better than B-LSTMp.8

This model considers linear chain connections be-
tween sentences inside comments and only to the
first comment. Note that both QC3 and TA are
forum sites, where participants in a conversation
interact mostly with the person who posts the first
comment asking for some information. This is in-
teresting that our model can capture this aspect.

Another interesting observation is that when we
change the above model to consider relations with
every sentence in the first comment (CRF (LC-
FC1)), this degrades the performance. This could
be due to the fact that the information seeking per-
son first explains her situation, and then asks for
the information. Others tend to respond to the re-
quested information rather than to her situation.
The CRF (FC-FC) also yields as good results as
CRF (LC-LC1). This could be attributed to the ro-
bustness of the fully-connected CRF, which learns

8Significance was computed on the concatenated testset.

•  ME	  and	  MLP	  baselines	  outperform	  LSTMs	  by	  a	  good	  margin.	  
•  Same	  observa:on	  with	  5-‐fold	  cross	  valida:on	  over	  the	  whole	  corpus.	  
•  Not	  surprising	  since	  LSTMs	  have	  a	  lot	  of	  parameters.	  
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QC3 TA MRDA
Testset 5 folds Testset 5 folds 5 classes 12 classes

Jeong et al. (ng) - - - - - 57.53 (83.30)
Jeong et al. (All) - - - - - 59.04 (83.49)

ME 55.12 (75.64) 50.23 (71.37) 61.4 (85.44) 59.23 (84.85) 65.25 (83.95) 57.79 (82.84)
MLP 61.30 (74.36) 54.57 (71.63) 68.17 (85.98) 62.41 (85.02) 68.12 (84.24) 58.19 (83.24)

U-LSTM
r

51.57 (73.55) 48.64 (65.94) 56.54 (83.24) 56.39 (83.83) 71.29 (85.38) 58.72 (83.34)
U-LSTM

p

49.41 (70.97) 50.26 (65.62) 63.12(83.78) 59.10 (83.13) 72.32 (85.19) 59.05 (84.06)

B-LSTM
r

50.75 (72.26) 48.41 (66.19) 58.88 (82.97) 56.23 (83.34) 71.69 (85.62) 58.33 (83.49)
B-LSTM

p

53.22 (71.61) 51.59 (68.50) 60.73 (82.97) 59.68 (84.07) 72.02 (85.33) 60.12 (84.46*)

Table 6: Macro-averaged F1 and raw accuracy (in parenthesis) for baselines and LSTM variants on the
testset and 5-fold splits of different corpora. For MRDA, we use the same train-test-dev split as (Jeong
et al., 2009). Accuracy significantly superior to state-of-the-art is marked with *.

QC3 (Testset) TA (Testset)

ME 50.64 (71.15) 72.49 (84.10)
MLP 58.60 (74.36) 73.07 (86.29)
B-LSTM

p

66.40 (80.65*) 73.14 (87.01*)

Table 7: Results on CAT dataset.

Train Dev Test

QC3 38 (1332) 4 (111) 5 (122)
TA 160 (2957) 20 (310) 20 (444)
Total 197 (4289) 24 (421) 25 (566)

Table 8: Setting for CON dataset. The numbers in-
side parentheses indicate the number of sentences.

opment, respectively.7 The testsets contain 5 and
20 conversations for QC3 and TA, respectively.

As baselines, we use three models: (i) MEb,
a MaxEnt using BOW representation; (ii) B-
LSTMp, which is now trained on the concatenated
set of sentences from MRDA and CON training
sets; and (iii) MEe, a MaxEnt using sentence em-
beddings extracted from the B-LSTMp, i.e., the
sentence embeddings are used as feature vectors.

We experiment with the CRF variants in Table
1. The CRFs are trained on the CON training set
using the sentence embeddings that are extracted
by applying the B-LSTMp model, as was done
with MEe. Table 9 shows our results. We notice
that CRFs generally outperform MEs in accuracy.
This indicates that there are conversational depen-
dencies between the sentences in a conversation.

When we compare between CRF variants, we
notice that the model that does not consider any
link across comments perform the worst; see CRF
(LC-NO). A simple linear chain connection be-
tween sentences in their temporal order does not

7We use the concatenated sets as train and dev. sets.

QC3 TA

ME
b

56.67 (67.21) 63.29 (84.23)
B-LSTM

p

65.15 (77.87) 66.93 (85.13)
ME

e

59.94 (77.05) 59.55 (85.14)

CRF (LC-NO) 62.20 (77.87) 60.30 (85.81)
CRF (LC-LC) 62.35 (78.69) 60.30 (85.81)
CRF (LC-LC1) 65.94 (80.33*) 61.58 (86.54)
CRF (LC-FC1) 61.18 (77.87) 60.00 (85.36)
CRF (FC-FC) 64.54 (79.51*) 61.64 (86.81*)

Table 9: Results of CRFs on CON dataset.

improve much (CRF (LC-LC)), which indicates
that the widely used linear chain CRF (Lafferty
et al., 2001) is not the most appropriate model
for capturing conversational dependencies in these
conversations. The CRF (LC-LC1) is one of the
best performing models and perform significantly
(with 99% confidence) better than B-LSTMp.8

This model considers linear chain connections be-
tween sentences inside comments and only to the
first comment. Note that both QC3 and TA are
forum sites, where participants in a conversation
interact mostly with the person who posts the first
comment asking for some information. This is in-
teresting that our model can capture this aspect.

Another interesting observation is that when we
change the above model to consider relations with
every sentence in the first comment (CRF (LC-
FC1)), this degrades the performance. This could
be due to the fact that the information seeking per-
son first explains her situation, and then asks for
the information. Others tend to respond to the re-
quested information rather than to her situation.
The CRF (FC-FC) also yields as good results as
CRF (LC-LC1). This could be attributed to the ro-
bustness of the fully-connected CRF, which learns

8Significance was computed on the concatenated testset.

•  Results	  ager	  training	  on	  a	  concatenated	  dataset:	  
o  MRDA	  +	  TA	  +	  BC3	  +	  QC3	  

•  Bi-‐direc:onal	  LSTM	  outperforms	  the	  baselines.	  
•  ME	  and	  MLP	  suffer	  from	  data	  diversity.	  	  
•  Bi-‐direc:onal	  LSTM	  gives	  beKer	  sentence	  representa:on	  
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•  Datasets	  for	  CRF	  experiments	  

QC3 TA MRDA
Testset 5 folds Testset 5 folds 5 classes 12 classes

Jeong et al. (ng) - - - - - 57.53 (83.30)
Jeong et al. (All) - - - - - 59.04 (83.49)

ME 55.12 (75.64) 50.23 (71.37) 61.4 (85.44) 59.23 (84.85) 65.25 (83.95) 57.79 (82.84)
MLP 61.30 (74.36) 54.57 (71.63) 68.17 (85.98) 62.41 (85.02) 68.12 (84.24) 58.19 (83.24)

U-LSTM
r

51.57 (73.55) 48.64 (65.94) 56.54 (83.24) 56.39 (83.83) 71.29 (85.38) 58.72 (83.34)
U-LSTM

p

49.41 (70.97) 50.26 (65.62) 63.12(83.78) 59.10 (83.13) 72.32 (85.19) 59.05 (84.06)

B-LSTM
r

50.75 (72.26) 48.41 (66.19) 58.88 (82.97) 56.23 (83.34) 71.69 (85.62) 58.33 (83.49)
B-LSTM

p

53.22 (71.61) 51.59 (68.50) 60.73 (82.97) 59.68 (84.07) 72.02 (85.33) 60.12 (84.46*)

Table 6: Macro-averaged F1 and raw accuracy (in parenthesis) for baselines and LSTM variants on the
testset and 5-fold splits of different corpora. For MRDA, we use the same train-test-dev split as (Jeong
et al., 2009). Accuracy significantly superior to state-of-the-art is marked with *.

QC3 (Testset) TA (Testset)

ME 50.64 (71.15) 72.49 (84.10)
MLP 58.60 (74.36) 73.07 (86.29)
B-LSTM

p

66.40 (80.65*) 73.14 (87.01*)

Table 7: Results on CAT dataset.

Train Dev Test

QC3 38 (1332) 4 (111) 5 (122)
TA 160 (2957) 20 (310) 20 (444)
Total 197 (4289) 24 (421) 25 (566)

Table 8: Setting for CON dataset. The numbers in-
side parentheses indicate the number of sentences.

opment, respectively.7 The testsets contain 5 and
20 conversations for QC3 and TA, respectively.

As baselines, we use three models: (i) MEb,
a MaxEnt using BOW representation; (ii) B-
LSTMp, which is now trained on the concatenated
set of sentences from MRDA and CON training
sets; and (iii) MEe, a MaxEnt using sentence em-
beddings extracted from the B-LSTMp, i.e., the
sentence embeddings are used as feature vectors.

We experiment with the CRF variants in Table
1. The CRFs are trained on the CON training set
using the sentence embeddings that are extracted
by applying the B-LSTMp model, as was done
with MEe. Table 9 shows our results. We notice
that CRFs generally outperform MEs in accuracy.
This indicates that there are conversational depen-
dencies between the sentences in a conversation.

When we compare between CRF variants, we
notice that the model that does not consider any
link across comments perform the worst; see CRF
(LC-NO). A simple linear chain connection be-
tween sentences in their temporal order does not

7We use the concatenated sets as train and dev. sets.

QC3 TA

ME
b

56.67 (67.21) 63.29 (84.23)
B-LSTM

p

65.15 (77.87) 66.93 (85.13)
ME

e

59.94 (77.05) 59.55 (85.14)

CRF (LC-NO) 62.20 (77.87) 60.30 (85.81)
CRF (LC-LC) 62.35 (78.69) 60.30 (85.81)
CRF (LC-LC1) 65.94 (80.33*) 61.58 (86.54)
CRF (LC-FC1) 61.18 (77.87) 60.00 (85.36)
CRF (FC-FC) 64.54 (79.51*) 61.64 (86.81*)

Table 9: Results of CRFs on CON dataset.

improve much (CRF (LC-LC)), which indicates
that the widely used linear chain CRF (Lafferty
et al., 2001) is not the most appropriate model
for capturing conversational dependencies in these
conversations. The CRF (LC-LC1) is one of the
best performing models and perform significantly
(with 99% confidence) better than B-LSTMp.8

This model considers linear chain connections be-
tween sentences inside comments and only to the
first comment. Note that both QC3 and TA are
forum sites, where participants in a conversation
interact mostly with the person who posts the first
comment asking for some information. This is in-
teresting that our model can capture this aspect.

Another interesting observation is that when we
change the above model to consider relations with
every sentence in the first comment (CRF (LC-
FC1)), this degrades the performance. This could
be due to the fact that the information seeking per-
son first explains her situation, and then asks for
the information. Others tend to respond to the re-
quested information rather than to her situation.
The CRF (FC-FC) also yields as good results as
CRF (LC-LC1). This could be attributed to the ro-
bustness of the fully-connected CRF, which learns

8Significance was computed on the concatenated testset.

•  CRF	  variants	  
Tag Connection type Applicable to

NO No connection between nodes intra & across
LC Linear chain connection intra & across
FC Fully connected intra & across
FC1 Fully connected with first comment only across
LC1 Linear chain with first comment only across

Table 1: Connection types in CRF models.

(a) NO-NO (MaxEnt) (b) LC-LC

(c) LC-LC1 (d) LC-FC1

Figure 3: CRFs over different graph structures.

Figure 3a shows the structure for NO-NO con-
figuration, where there is no link between nodes of
both intra- and across- comments. In this setting,
the CRF model is equivalent to MaxEnt. Figure
3b shows the structure for LC-LC, where there
are linear chain relations between nodes of both
intra- and across- comments. The linear chain
across comments refers to the structure, where
the last sentence of each comment is connected
to the first sentence of the comment that comes
next in the temporal order (i.e., posting time). Fig-
ures 3c shows the CRF for LC-LC1, where sen-
tences inside a comment have linear chain connec-
tions, and the last sentence of the first comment is
connected to the first sentence of the other com-
ments. Similarly, Figure 3d shows the graph struc-
ture for LC-FC1 configuration, where sentences
inside comments have linear chain connections,
and sentences of the first comment are fully con-
nected with the sentences of the other comments.

3 Corpora

There exist large corpora of utterances annotated
with speech acts in synchronous spoken domains,
e.g., Switchboard-DAMSL or SWBD (Jurafsky et
al., 1997) and Meeting Recorder Dialog Act or
MRDA (Dhillon et al., 2004). However, such large
corpus does not exist in asynchronous domains.
Some prior work (Cohen et al., 2004; Ravi and
Kim, 2007; Feng et al., 2006; Bhatia et al., 2014)
tackles the task at the comment level, and uses

TA BC3
Total number of conv. 200 39
Avg. nb of comments per conv. 4.02 6.54
Avg. nb of sentences per conv. 18.56 34.15
Avg. nb of words per sentence 14.90 12.61

Table 2: Statistics about TA and BC3 corpora.

Tag Description TA BC3 MRDA
SU Suggestion 7.71% 5.48% 5.97%
R Response 2.4% 3.75% 15.63%
Q Question 14.71% 8.41% 8.62%
P Polite 9.57% 8.63% 3.77%
ST Statement 65.62% 73.72% 66.00%

Table 3: Distribution of speech acts in our corpora.

task-specific tagsets. In contrast, in this work we
are interested in identifying speech acts at the sen-
tence level, and also using a standard tagset like
the ones defined in SWBD and MRDA.

More recent studies attempt to solve the task at
the sentence level. Jeong et al. (2009) first created
a dataset of TripAdvisor (TA) forum conversations
annotated with the standard 12 act types defined in
MRDA. They also remapped the BC3 email cor-
pus (Ulrich et al., 2008) according to this tagset.
Table 10 in the Appendix presents the tags and
their relative frequency in the two datasets. Subse-
quent studies (Joty et al., 2011; Tavafi et al., 2013;
Oya and Carenini, 2014) use these datasets. We
also use these datasets in our work. Table 2 shows
some basic statistics about these datasets. On aver-
age, BC3 conversations are longer than TA in both
number of comments and number of sentences.

Since these datasets are relatively small in size,
we group the 12 acts into 5 coarser classes to
learn a reasonable classifier.1 More specifically,
all the question types are grouped into one gen-
eral class Question, all response types into Re-
sponse, and appreciation and polite mechanisms
into Polite class. Also since deep neural models
like LSTM RNNs require a lot of training data,
we also utilize the MRDA meeting corpus. Ta-
ble 3 shows the label distribution of the resultant
datasets. Statement is the most dominant class,
followed by Question, Polite and Suggestion.

QC3 Conversational Corpus Since both TA
and BC3 are quite small to make a general com-
ment about model performance in asynchronous

1Some prior work (Tavafi et al., 2013; Oya and Carenini,
2014) also took the same approach.
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QC3 TA MRDA
Testset 5 folds Testset 5 folds 5 classes 12 classes

Jeong et al. (ng) - - - - - 57.53 (83.30)
Jeong et al. (All) - - - - - 59.04 (83.49)

ME 55.12 (75.64) 50.23 (71.37) 61.4 (85.44) 59.23 (84.85) 65.25 (83.95) 57.79 (82.84)
MLP 61.30 (74.36) 54.57 (71.63) 68.17 (85.98) 62.41 (85.02) 68.12 (84.24) 58.19 (83.24)

U-LSTM
r

51.57 (73.55) 48.64 (65.94) 56.54 (83.24) 56.39 (83.83) 71.29 (85.38) 58.72 (83.34)
U-LSTM

p

49.41 (70.97) 50.26 (65.62) 63.12(83.78) 59.10 (83.13) 72.32 (85.19) 59.05 (84.06)

B-LSTM
r

50.75 (72.26) 48.41 (66.19) 58.88 (82.97) 56.23 (83.34) 71.69 (85.62) 58.33 (83.49)
B-LSTM

p

53.22 (71.61) 51.59 (68.50) 60.73 (82.97) 59.68 (84.07) 72.02 (85.33) 60.12 (84.46*)

Table 6: Macro-averaged F1 and raw accuracy (in parenthesis) for baselines and LSTM variants on the
testset and 5-fold splits of different corpora. For MRDA, we use the same train-test-dev split as (Jeong
et al., 2009). Accuracy significantly superior to state-of-the-art is marked with *.

QC3 (Testset) TA (Testset)

ME 50.64 (71.15) 72.49 (84.10)
MLP 58.60 (74.36) 73.07 (86.29)
B-LSTM

p

66.40 (80.65*) 73.14 (87.01*)

Table 7: Results on CAT dataset.

Train Dev Test

QC3 38 (1332) 4 (111) 5 (122)
TA 160 (2957) 20 (310) 20 (444)
Total 197 (4289) 24 (421) 25 (566)

Table 8: Setting for CON dataset. The numbers in-
side parentheses indicate the number of sentences.

opment, respectively.7 The testsets contain 5 and
20 conversations for QC3 and TA, respectively.

As baselines, we use three models: (i) MEb,
a MaxEnt using BOW representation; (ii) B-
LSTMp, which is now trained on the concatenated
set of sentences from MRDA and CON training
sets; and (iii) MEe, a MaxEnt using sentence em-
beddings extracted from the B-LSTMp, i.e., the
sentence embeddings are used as feature vectors.

We experiment with the CRF variants in Table
1. The CRFs are trained on the CON training set
using the sentence embeddings that are extracted
by applying the B-LSTMp model, as was done
with MEe. Table 9 shows our results. We notice
that CRFs generally outperform MEs in accuracy.
This indicates that there are conversational depen-
dencies between the sentences in a conversation.

When we compare between CRF variants, we
notice that the model that does not consider any
link across comments perform the worst; see CRF
(LC-NO). A simple linear chain connection be-
tween sentences in their temporal order does not

7We use the concatenated sets as train and dev. sets.

QC3 TA

ME
b

56.67 (67.21) 63.29 (84.23)
B-LSTM

p

65.15 (77.87) 66.93 (85.13)
ME

e

59.94 (77.05) 59.55 (85.14)

CRF (LC-NO) 62.20 (77.87) 60.30 (85.81)
CRF (LC-LC) 62.35 (78.69) 60.30 (85.81)
CRF (LC-LC1) 65.94 (80.33*) 61.58 (86.54)
CRF (LC-FC1) 61.18 (77.87) 60.00 (85.36)
CRF (FC-FC) 64.54 (79.51*) 61.64 (86.81*)

Table 9: Results of CRFs on CON dataset.

improve much (CRF (LC-LC)), which indicates
that the widely used linear chain CRF (Lafferty
et al., 2001) is not the most appropriate model
for capturing conversational dependencies in these
conversations. The CRF (LC-LC1) is one of the
best performing models and perform significantly
(with 99% confidence) better than B-LSTMp.8

This model considers linear chain connections be-
tween sentences inside comments and only to the
first comment. Note that both QC3 and TA are
forum sites, where participants in a conversation
interact mostly with the person who posts the first
comment asking for some information. This is in-
teresting that our model can capture this aspect.

Another interesting observation is that when we
change the above model to consider relations with
every sentence in the first comment (CRF (LC-
FC1)), this degrades the performance. This could
be due to the fact that the information seeking per-
son first explains her situation, and then asks for
the information. Others tend to respond to the re-
quested information rather than to her situation.
The CRF (FC-FC) also yields as good results as
CRF (LC-LC1). This could be attributed to the ro-
bustness of the fully-connected CRF, which learns

8Significance was computed on the concatenated testset.

o  MEb	  :	  MaxEnt	  with	  BoW	  representa:on.	  
o  B-‐LSTMp	  :	  Bi-‐direc:onal	  LSTM	  with	  pre-‐trained	  embeddings.	  	   	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Trained	  on	  concatenated	  dataset.	  	  
o  MEe	  :	  MaxEnt	  with	  sentence	  embeddings	  from	  B-‐LSTMp.	  

•  Baselines	  (local	  models)	  
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QC3 TA MRDA
Testset 5 folds Testset 5 folds 5 classes 12 classes

Jeong et al. (ng) - - - - - 57.53 (83.30)
Jeong et al. (All) - - - - - 59.04 (83.49)

ME 55.12 (75.64) 50.23 (71.37) 61.4 (85.44) 59.23 (84.85) 65.25 (83.95) 57.79 (82.84)
MLP 61.30 (74.36) 54.57 (71.63) 68.17 (85.98) 62.41 (85.02) 68.12 (84.24) 58.19 (83.24)

U-LSTM
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51.57 (73.55) 48.64 (65.94) 56.54 (83.24) 56.39 (83.83) 71.29 (85.38) 58.72 (83.34)
U-LSTM
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49.41 (70.97) 50.26 (65.62) 63.12(83.78) 59.10 (83.13) 72.32 (85.19) 59.05 (84.06)

B-LSTM
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50.75 (72.26) 48.41 (66.19) 58.88 (82.97) 56.23 (83.34) 71.69 (85.62) 58.33 (83.49)
B-LSTM
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53.22 (71.61) 51.59 (68.50) 60.73 (82.97) 59.68 (84.07) 72.02 (85.33) 60.12 (84.46*)

Table 6: Macro-averaged F1 and raw accuracy (in parenthesis) for baselines and LSTM variants on the
testset and 5-fold splits of different corpora. For MRDA, we use the same train-test-dev split as (Jeong
et al., 2009). Accuracy significantly superior to state-of-the-art is marked with *.

QC3 (Testset) TA (Testset)

ME 50.64 (71.15) 72.49 (84.10)
MLP 58.60 (74.36) 73.07 (86.29)
B-LSTM

p

66.40 (80.65*) 73.14 (87.01*)

Table 7: Results on CAT dataset.

Train Dev Test

QC3 38 (1332) 4 (111) 5 (122)
TA 160 (2957) 20 (310) 20 (444)
Total 197 (4289) 24 (421) 25 (566)

Table 8: Setting for CON dataset. The numbers in-
side parentheses indicate the number of sentences.

opment, respectively.7 The testsets contain 5 and
20 conversations for QC3 and TA, respectively.

As baselines, we use three models: (i) MEb,
a MaxEnt using BOW representation; (ii) B-
LSTMp, which is now trained on the concatenated
set of sentences from MRDA and CON training
sets; and (iii) MEe, a MaxEnt using sentence em-
beddings extracted from the B-LSTMp, i.e., the
sentence embeddings are used as feature vectors.

We experiment with the CRF variants in Table
1. The CRFs are trained on the CON training set
using the sentence embeddings that are extracted
by applying the B-LSTMp model, as was done
with MEe. Table 9 shows our results. We notice
that CRFs generally outperform MEs in accuracy.
This indicates that there are conversational depen-
dencies between the sentences in a conversation.

When we compare between CRF variants, we
notice that the model that does not consider any
link across comments perform the worst; see CRF
(LC-NO). A simple linear chain connection be-
tween sentences in their temporal order does not

7We use the concatenated sets as train and dev. sets.

QC3 TA

ME
b

56.67 (67.21) 63.29 (84.23)
B-LSTM

p

65.15 (77.87) 66.93 (85.13)
ME

e

59.94 (77.05) 59.55 (85.14)

CRF (LC-NO) 62.20 (77.87) 60.30 (85.81)
CRF (LC-LC) 62.35 (78.69) 60.30 (85.81)
CRF (LC-LC1) 65.94 (80.33*) 61.58 (86.54)
CRF (LC-FC1) 61.18 (77.87) 60.00 (85.36)
CRF (FC-FC) 64.54 (79.51*) 61.64 (86.81*)

Table 9: Results of CRFs on CON dataset.

improve much (CRF (LC-LC)), which indicates
that the widely used linear chain CRF (Lafferty
et al., 2001) is not the most appropriate model
for capturing conversational dependencies in these
conversations. The CRF (LC-LC1) is one of the
best performing models and perform significantly
(with 99% confidence) better than B-LSTMp.8

This model considers linear chain connections be-
tween sentences inside comments and only to the
first comment. Note that both QC3 and TA are
forum sites, where participants in a conversation
interact mostly with the person who posts the first
comment asking for some information. This is in-
teresting that our model can capture this aspect.

Another interesting observation is that when we
change the above model to consider relations with
every sentence in the first comment (CRF (LC-
FC1)), this degrades the performance. This could
be due to the fact that the information seeking per-
son first explains her situation, and then asks for
the information. Others tend to respond to the re-
quested information rather than to her situation.
The CRF (FC-FC) also yields as good results as
CRF (LC-LC1). This could be attributed to the ro-
bustness of the fully-connected CRF, which learns

8Significance was computed on the concatenated testset.

o  CRFs	  generally	  outperform	  local	  baselines	  in	  accuracy.	  
o  Linear	  chain	  CRFs	  are	  not	  the	  best	  models.	  
o  CRF	  (LC-‐LC1)	  and	  CRF	  (FC-‐FC)	  are	  best	  performing	  models.	  	  

o  CRF	  models	  use	  the	  sentence	  embeddings	  from	  B-‐LSTMp	  
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Task-Specific Embeddings and Conditional Structured Models

Shafiq Joty and Enamul Hoque
ALT Research Group

Qatar Computing Research Institute — HBKU, Qatar Foundation
{sjoty, mprince}@qf.org.qa

Abstract

This paper addresses the problem of
speech act recognition in written asyn-
chronous conversations (e.g., fora,
emails). We propose a class of conditional
structured models defined over arbitrary
graph structures to capture the conversa-
tional dependencies between sentences.
Our models use sentence representations
encoded by a long short term memory
(LSTM) recurrent neural model. Empir-
ical evaluation shows the effectiveness
of our approach over existing ones:
(i) LSTMs provide better task-specific
representations, and (ii) the global joint
model improves over local models.

1 Introduction

Asynchronous conversations, where participants
communicate with each other at different times
(e.g., fora, emails), have become very common for
discussing events, issues, queries and life experi-
ences. In doing so, participants interact with each
other in complex ways, performing certain com-
municative acts like asking questions, requesting
information or suggesting something. These are
called speech acts (Austin, 1962).

For example, consider the excerpt of a forum
conversation from our corpus in Figure 1. The
participant who posted the first comment C1, de-
scribes his situation by the first two sentences and
then asks a question in the third sentence. Other
participants respond to the query by suggesting
something or asking for clarification. In this pro-
cess, the participants get into a conversation by
taking turns, each of which consists of one or
more speech acts. The two-part structures across
posts like ‘question-answer’ and ‘request-grant’
are called adjacency pairs (Schegloff, 1968).

C1: My son wish to do his bachelor degree in Mechanical
Engineering in an affordable Canadian university.
Human: st, Local: st, Global: st
The info. available in the net and the people who wish
to offer services are too many and some are misleading.
Human: st, Local: st, Global: st
The preliminary preparations,eligibility,the require
funds etc., are some of the issues which I wish to know
from any panel members of this forum .. (truncated)
Human: ques, Local: st, Global: st

C3 (truncated)...take a list of canadian universities and then
create a table and insert all the relevant information by
reading each and every program info on the web.
Human: sug, Local: sug, Global: sug
Without doing a research my advice would be to apply
to UVIC .. for the following reasons .. (truncated)
Human: sug, Local: sug, Global: sug
UBC is good too... but it is expensive particularly for
international students due to tuition .. (truncated)
Human: sug, Local: sug, Global: sug
most of them accept on-line or email application.
Human: st, Local: st, Global: st
Good luck !!
Human: pol, Local: pol, Global: pol

C4 snakyy21: UVIC is a short form of? I have already
started researching for my brother and found “College
of North Atlantic” and .. (truncated)
Human: ques, Local: st, Global: ques
but not sure about the reputation..
Human: st, Local: res, Global: st

C5 thank you for sharing useful tips will follow your advise.
Human: pol, Local: pol, Global: pol

Figure 1: Example conversation with Human an-
notations and automatic predictions by a Local
classifier and a Global classifier. The labels st,
ques, sug, and pol refers to Statement, Question,
Suggestion, and Polite speech acts, respectively.

Identification of speech acts is an important step
towards deep conversation analysis in these media
(Bangalore et al., 2006), and has been shown to be
useful in many downstream applications including
summarization (McKeown et al., 2007) and ques-
tion answering (Hong and Davison, 2009).

Previous attempts to automatic (sentence-level)
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•  Two-‐step	  framework	  for	  speech	  act	  recogni:on	  
o  LSTM-‐RNN	  to	  encode	  each	  sentence	  
o  Pairwise	  CRFs	  to	  model	  conversa:onal	  dependencies	  

•  Combine	  the	  input	  representa:onal	  power	  of	  DNNs	  with	  
the	  output	  representa:onal	  power	  of	  PGMs.	  	  

•  LSTMs	  provide	  beKer	  representa:ons	  but	  requires	  more	  data	  
•  Global	  joint	  models	  improve	  over	  local	  models	  given	  that	  it	  

considers	  the	  right	  graph	  structure.	  	  

•  Combine	  CRFs	  with	  LSTMs	  to	  perform	  the	  two	  steps	  
jointly	  by	  taking	  LBP	  errors	  back	  to	  the	  embedding	  layers.	  	  

•  Apply	  to	  conversa:ons	  where	  graph	  structure	  is	  already	  
given	  (e.g.,	  Slashdot)	  or	  extractable	  (emails).	  

hKp://alt.qcri.org/tools/speech-‐act/	  Code	  &	  Data:	  
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Belief Propagation for Pairwise Factors 

3.1 Joint Learning of Two Classifiers with
Global Thread-Level Inference

Our aim is to train the local classifiers so that they
produce correct global classification. To this end, in
our first model we train the node- and the edge-level
classifiers jointly based on global feedback provided
by a global inference algorithm. The global feed-
back determines how much to adjust the local classi-
fiers so that the classifiers and the inference together
produce the desired result. We use log-linear models
(aka maximum entropy) for both classifiers:

 n(yi = k|xi,v) =

exp(v

T
k xi)PK

k0=1 exp(v
T
k xi)

(1)

 e(yi,j = l|�(xi,xj),w)=

exp(w

T
l �(xi,xj))PL

l0=1 exp(w
T
l0�(xi,xj))

(2)

The log likelihood (LL) for one data point (x,y)
(i.e., a thread) can be written as follows:

f(✓) =
X

i2V

KX

k=1

yki
⇥
v

T
k xi � logZ(v,xi)

⇤
+

X

(i,j)2E

LX

l=1

yli,j
⇥
w

T
l �(xi,xj)� logZ(w,xi,xj)

⇤
(3)

where yki and yli,j are the gold labels for i-th node
and (i, j)-th edge expressed in 1-of-K (or 1-of-L)
encoding, respectively, and Z(·) terms are the local
normalization constants.

We give a pseudocode in Algorithm 1 that trains
this model in an online fashion using feedback from
the loopy belief propagation (LBP) inference algo-
rithm (to be described later in Section 3.1.1). Specif-
ically, the marginals from the LBP are used in a
stochastic gradient descent (SGD) algorithm, which
has the following (minibatch) update rule:

✓t+1 = ✓t � ⌘t
1

N
f 0
(✓t) (4)

where ✓t and ⌘t are the model parameters and the
learning rate at step t, respectively, and 1

N f 0
(✓t) is

the mean gradient for the minibatch (a thread). For
our maximum entropy models, the gradients become

f 0
(v) =

X

i2V

[�n(yi)� yi] .xi (5)

f 0
(w) =

X

(i,j)2E

[�e(yi,j)� yi,j ] .�(xi,xj) (6)

Algorithm 1: Joint learning of local classifiers
with global thread-level inference

1. Initialize the model parameters v and w;
2. repeat

for each thread G = (V,E) do
a. Compute node and edge probabilities
 n(yi|xi,v) and  e(yi,j |�(xi,xj),w);
b. Infer node and edge marginals �n(yi)
and �e(yi,j) using sum-product LBP;
c. Update: v = v � ⌘

|V |f
0
(v);

d. Update: w = w � ⌘
|E|f

0
(w);

end
until convergence;

In the above equations, � and y are the marginals
and the gold labels, respectively.

Note that when applying the model to the test
threads, we need to perform the same global infer-
ence to get the best label assignments.

3.1.1 Inference Using Belief Propagation
Belief Propagation or BP (Pearl, 1988) is a mes-

sage passing algorithm for inference in probabilis-
tic graphical models. It supports (i) sum-product,
to compute the marginal distribution for each un-
observed variable, i.e., p(yi|x, ✓); and (ii) max-
product, to compute the most likely label configu-
ration, i.e., argmaxy p(y|x, ✓). We describe here
the variant that operates on undirected graphs (aka
Markov random fields) with pairwise factors, which
uses the following equations:
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where µi!j is a message from node i to node j,
N(i) are the nodes neighbouring i, and  n(yi) and
 e(yi,j) are the node and the edge factors.

The algorithm proceeds by sending messages on
each edge until the node beliefs �n(yi) stabilize.
The edge beliefs can be written as follows:
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threads, we need to perform the same global infer-
ence to get the best label assignments.

3.1.1 Inference Using Belief Propagation
Belief Propagation or BP (Pearl, 1988) is a mes-

sage passing algorithm for inference in probabilis-
tic graphical models. It supports (i) sum-product,
to compute the marginal distribution for each un-
observed variable, i.e., p(yi|x, ✓); and (ii) max-
product, to compute the most likely label configu-
ration, i.e., argmaxy p(y|x, ✓). We describe here
the variant that operates on undirected graphs (aka
Markov random fields) with pairwise factors, which
uses the following equations:

µi!j(yj) =

X

yi

 n(yi) e(yi,j)
Y

k2N(i)\j

µk!i(yi) (7)

�n(yi) ⇡  n(yi)
Y

j2N(i)

µj!i(yi) (8)

where µi!j is a message from node i to node j,
N(i) are the nodes neighbouring i, and  n(yi) and
 e(yi,j) are the node and the edge factors.

The algorithm proceeds by sending messages on
each edge until the node beliefs �n(yi) stabilize.
The edge beliefs can be written as follows:

�e(yi,j) ⇡  e(yi,j)⇥ µi!j(yi)⇥ µj!i(yj) (9)
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Message:	  

Node	  Belief:	  

Edge	  Belief:	  

•  BP	  is	  guaranteed	  to	  converge	  to	  an	  exact	  solu:on	  if	  the	  graph	  
is	  a	  tree.	  

•  Exact	  inference	  is	  intractable	  for	  general	  graphs	  (with	  loops).	  
•  Although	  LBP	  gives	  approximate	  solu:ons	  for	  general	  graphs,	  
it	  ogen	  works	  well	  in	  prac:ce	  (Murphy	  et	  al,	  1999)	  
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where N(v) is the set of neighbouring (factor) nodes to v. If N(v) \ {a}
is empty, then µ

v!a

(x
v

) is set to the uniform distribution. For example,
in Figure 1 the message

µ

v2!f1,2 = µ

f2,3!v2 ⇥ µ

f2,4!v2 (3)

v1 v2 v3 v4
Variable
nodes

Factor
nodes

f1,2 f1,3 f1,4 f2,3 f2,4 f3,4

Figure 1: A factor graph where the factors are defined on each variable pair.

• A message from a factor node a to a variable node v (µ
a!v

) is the product
of the factor with messages from all other nodes, marginalized over all
variables except v:

µ

a!v

(x
v

) =
X

x

0
a:x

0
v=xv

f

a

(x0
a

)
Y

v

⇤2N(a)\{v}

µ

v

⇤!a

(x
v⇤); 8xv

2 Dom(v) (4)

where N(a) is the set of neighboring (variable) nodes to a. If N(a)\{v} is
empty then µ

a!v

(x
v

) = f

a

(x
v

), since in this case x

v

= x

a

. For example,
in the pairwise factor graph of Figure 1 the message

µ

f1,2!v1 =
X

v2

f2(v2)f1,2(v1, v2)⇥ µ

v2!f1,2 (5)

For a pairwise graph, we can further combine Equations 3 and 5, and write
the following using only the random variables:

µ

v2!v1 =
X

v2

f2(v2)f1,2(v1, v2)
Y

v

⇤2N(v2)\{v1}

µ

v

⇤!v2 (6)

The net e↵ect of the two types of messages is that a variable node gets
influenced by its neighboring variable nodes in the original graph, where each
influence is factor marginalized over other variables. In a typical run, each
message will be updated iteratively from the previous value of the neighboring
messages. Di↵erent scheduling can be used for updating the messages. In the
case where the graphical model is a tree, an optimal scheduling allows to reach
convergence after computing each message only once. When the factor graph
has cycles or loops, such an optimal scheduling does not exist, and a typical
choice is to update all messages simultaneously at each iteration.

2

•  Message	  from	  a	  variable	  node	  to	  a	  factor	  node	  
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• A message from a factor node a to a variable node v (µa!v) is the product
of the factor with messages from all other nodes, marginalized over all
variables except v:
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where N(a) is the set of neighboring (variable) nodes to a. If N(a)\{v} is
empty then µa!v(xv) = fa(xv), since in this case xv = xa. For example,
in the pairwise factor graph of Figure 1 the message

µf1,2!v1 =
X

v2

f2(v2)f1,2(v1, v2)⇥ µv2!f1,2 (5)

For a pairwise graph, we can further combine Equations 3 and 5, and write
the following using only the random variables:

µv2!v1 =
X

v2

f2(v2)f1,2(v1, v2)
Y

v⇤2N(v2)\{v1}

µv⇤!v2 (6)

2

•  Belief	  propaga:on	  (Pearl,	  1988)	  is	  a	  message	  passing	  algorithm	  
for	  performing	  inference	  in	  probabilis:c	  graphical	  models.	  	  	  	  
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The net e↵ect of the two types of messages is that a variable node gets
influenced by its neighboring variable nodes in the original graph, where each
influence is factor marginalized over other variables. In a typical run, each
message will be updated iteratively from the previous value of the neighboring
messages. Di↵erent scheduling can be used for updating the messages. In the
case where the graphical model is a tree, an optimal scheduling allows to reach
convergence after computing each message only once. When the factor graph
has cycles or loops, such an optimal scheduling does not exist, and a typical
choice is to update all messages simultaneously at each iteration.

2

Upon convergence, the estimated marginal distribution of each node is pro-
portional to the product of all messages from adjoining factors:

P (x
v

) /
Y

a2N(v)

µ

a!v

(x
v

) (7)

Likewise, the estimated joint marginal distribution of the set of variables
belonging to one factor is proportional to the product of the factor and the
messages from the variables:

P (x
a

) / f

a

(x
a

)
Y

v2N(a)

µ

v!a

(x
v

) (8)

In the case where the factor graph is acyclic (i.e. tree, forest), these estimated
marginal actually converge to the true marginals in a finite number of iterations.
Since in our work we are interested in general graphs with loops, in the following
we describe an approximation algorithm for such graphs, i.e., the loopy BP.

2.1 Approximate Algorithm for General Graphs

Although it was originally designed for acyclic graphical models, it was found
that the BP can be used in general graphs. The algorithm is then called “loopy”
BP. Although the algorithm remains the same, initialization and update schedul-
ing must be adjusted slightly compared with the one used for trees.

In Loopy BP, one initializes all variable messages to 1 and updates all
messages simultaneously (typically) at every iteration. One method of exact
marginalization in general graphs is called the junction tree algorithm, which
is simply belief propagation on a modified graph guaranteed to be a tree. The
basic premise is to eliminate cycles by clustering them into single nodes.

2.1.1 Loopy Belief Propagation for Pairwise Factor Graphs

Let us formulate the loopy BP for the factor graph G = (V,E) in Figure 1. The
joint probability can be written in terms of node and edge potentials:

P (x) ⇡
Y

v2V

f

v

(x
v

)
Y

(u,v)2E

f

u,v

(x
u

, x

v

) (9)

See Kevin’s book Chap 22 for a pseudocode of the algorithm.

3 Results

Model Learn. Alg Permutation Dev Acc Test Acc
MaxEnt LBFGS - - 78.43
MaxEnt SGD Yes 76.47 79.15*
MaxEnt SGD No 75.54 78.67

Table 1: Local Good-vs-Bad classification.
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