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What this Talk is About? 

•  Not about feature engineering 
•  Not about deep learning 
•  But, about joint learning and inference 
•  Also about locally vs. globally normalized models.  
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The Task: Community Question Answering 

hello	  guys	  and	  gals..could	  anyone	  of	  u	  knows	  where	  to	  buy	  a	  good	  
and	  originals	  RC	  helicopters	  and	  toy	  guns	  here	  in	  qatar..im	  longin	  for	  
this	  toys	  but	  its	  nowhere	  to	  find..	  thanks	  

Q	  

Did	  you	  check	  with	  Toys	  R	  us?	  I	  think	  I	  saw	  it	  there.	  

Go	  to	  Doha	  city	  center	  you	  may	  get	  it	  at	  4	  floor.	  

``Hobby	  Shop"	  in	  City	  center	  has	  these	  toys	  with	  original	  
motors.	  They	  are	  super	  cool..	  U	  will	  love	  that	  shop..and	  will	  
definetly	  buy	  one	  :)	  Have	  fun	  :)	  

Hobby	  Shop-‐	  City	  Centre	  

OMG!!	  :|	  Guns	  and	  helicopters??!!	  

Speed	  Marine-‐	  Salwa	  Road	  I	  think	  these	  guys	  r	  the	  best	  ..	  	  

A1	  

A2	  

A3	  

A4	  

A5	  

A6	  
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Need for Joint Learning and Inference 

Joint Learning with Global Inference
for Comment Classification in Community Question Answering
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Abstract

This paper addresses the problem of comment
classification in community Question Answer-
ing. Following the state of the art, we ap-
proach the task with a global inference pro-
cess to exploit the information of all com-
ments in the answer-thread in the form of a
fully connected graph. Our contribution com-
prises two novel joint learning models that are
on-line and integrate inference within learn-
ing. The first one jointly learns two node- and
edge-level MaxEnt classifiers with stochastic
gradient descent and integrates the inference
step with loopy belief propagation. The sec-
ond model is an instance of fully connected
pairwise CRFs (FCCRF). The FCCRF model
significantly outperforms all other approaches
and yields the best results on the task to date.
Crucial elements for its success are the global
normalization and an Ising-like edge potential.

1 Introduction

Online community fora have been gaining a lot of
popularity in recent years. Many of them, such as
Stack Exchange1, are quite open, allowing anybody
to ask and anybody to answer a question, which
makes them very valuable sources of information.
Yet, this same democratic nature resulted in some
questions accumulating a large number of answers,
many of which are of low quality. While nowa-
days online fora are typically searched using stan-
dard search engines that index entire threads, this is
not optimal, as it can be very time-consuming for a
user to go through and make sense of a long thread.

1http://stackexchange.com/

Q: hello guys and gals..could anyone of u knows where
to buy a good and originals RC helicopters and toy
guns here in qatar..im longin for this toys but its
nowhere to find.. thanks

A1 Go to Doha city center you may get it at 4 floor.
Local: Good, Human: Good

A2 “Hobby Shop” in City center has these toys with orig-
inal motors. They are super cool.. U will love that
shop..and will definetly buy one :) Have fun :)
Local: Good, Human: Good

A3 IM selling all my rc nitro helicopters. call me at
5285113.. (1)TREX 600 new/ (1) TREX500 (1)
SHUTTLERG (1) FUTABA ... [truncated]
Local: Good, Human: Bad

A4 Hobby Shop- City Centre
Local: Bad, Human: Good

A5 OMG!! :— Guns and helicopters??!!
Local: Good, Human: Bad

A6 Speed Marine- Salwa Road I think these guys r the
best in town...
Local: Good, Human: Good

A7 City center, i’ve seen wonderful collection.. Its some
wer besides the kids fun place..
Local: Bad, Human: Good

A8 try the shop in city center. they have many RC toys
for sale there. and for the toy guns, in your talking
baout airsoft i think its prohibited here. good luck
Local: Good, Human: Good

Figure 1: Example answer-thread with human an-
notations and automatic predictions by a local clas-
sifier at the comment level.

•  Classifier	  does	  not	  get	  enough	  
informa:on	  when	  comments	  are	  
considered	  separately.	  

•  Need	  Joint	  learning	  &	  inference	  to	  learn	  
to	  classify	  collec:vely.	  
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•  Many	  comments	  are	  short.	  
•  Many	  comments	  contain	  similar	  info.	  
•  Similar	  comments	  should	  get	  similar	  
labels.	  

•  Similarity	  with	  ques:on	  not	  enough.	  
	  



Outline 
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•  Mo:va:on	  
•  Three	  approaches	  to	  classifica:on	  
•  Our	  models	  

o  Locally	  normalized	  Joint	  model	  
o  Globally	  normalized	  Fully-‐connected	  CRF	  

•  Inference	  with	  loopy	  Belief	  Propaga:on	  
•  Experiments	  &	  error	  analysis	  
•  Conclusion	  &	  future	  work	  



Three Approaches to Classification 

xi	  
xj	  

xk	  yi	  
yj	  

yk	  

Approach	  1:	  Classify	  each	  comment	  separately	  

The framework has been applied to many NLP
structure prediction problems, including shallow
parsing (Punyakanok and Roth, 2000), semantic role
labeling (Punyakanok et al., 2004), and joint learn-
ing of entities and relations (Roth and Yih, 2004).
Further work explored the possibility of coupling
learning and inference in the previous setting. For
instance, Carreras et al. (2005) presented a model
for parsing that jointly trains several local decisions
with a perceptron-like algorithm that gets feedback
after inference. Punyakanok et al. (2005) studied
empirically and theoretically the cases in which this
inference-based learning strategy is superior to the
decoupled approach.

On the particular problem of comment classifica-
tion in cQA, we find some work exploiting thread-
level information. Hou et al. (2015) used features
about the position of the comment in the thread.
Barrón-Cedeño et al. (2015) developed more elab-
orated global features to model thread structure and
the interaction among users. Other work exploited
global inference algorithms at the thread-level. For
instance, (Zhou et al., 2015c; Zhou et al., 2015b;
Barrón-Cedeño et al., 2015) treated the task as se-
quential classification, using a variety of machine
learning algorithms to label the sequence of time-
sorted comments: LSTMs, CRFs, SVMhmm, etc.
Finally, Joty et al. (2015) showed that exploiting the
pairwise relations between comments (at any dis-
tance) is more effective than the sequential informa-
tion. Their results are the best on this task to date.
In this paper, we assume the same setting (cf. Sec-
tion 3) and we experiment with new models to do
learning jointly with inference in the same manner
as in (Punyakanok et al., 2005), and also using fully
connected pairwise CRFs.

3 Our Model

Given a forum question Q and a thread of answers
T = {A1, A2, · · · , An}, the task is to classify each
answer Ai in the thread into one of K possible
classes based on its relevance to the question. We
represent each thread as a fully-connected graph,
where each node represents an answer in the thread.

Given this setting, there exist at least three funda-
mentally different approaches to learn classification
functions.

First, the traditional approach of learning a local
classifier ignoring the structure in the output and us-
ing it to predict the label of each node Ai separately.
This approach only considers correlations between
the label of Ai and features extracted from Ai.

The second approach, adopted by Joty et al.
(2015), is to first learn two local classifiers sepa-
rately: (i) a node-level classifier to predict the label
for each individual node, and (ii) an edge-level clas-
sifier to predict whether the two nodes connected by
an edge should have the same label or not (assuming
a fully connected graph). The predictions of the lo-
cal classifiers are then used in a global inference al-
gorithm (e.g., graph-cut) to perform collective clas-
sification by maintaining structural constraints in the
output. There are two issues with this model: (i) the
local classifiers are trained separately; (ii) by decou-
pling learning from inference, this approach can lead
to suboptimal solutions, as Punyakanok et al. (2005)
pointed out.

The third approach, which we adopt in this pa-
per, is to model the dependencies between the out-
put variables while learning the classification func-
tions jointly by optimizing a global performance cri-
terion. The dependencies are captured using node-
level and edge-level factors defined over a fully con-
nected graph. The idea is that incorporating struc-
tural constraints in the form of all-pair relations dur-
ing training can yield a better solution that directly
optimizes an objective function for the target task.

Before we present our models in subsections 3.1
and 3.2, let us first introduce the notation that we
will use. Each thread T = {A1, A2, · · · , An} is
represented by a complete graph G = (V,E). Each
node i 2 V in the graph is associated with an input
vector xi, which represents the features of an an-
swer Ai, and an output variable yi 2 {1, 2, · · · ,K},
representing the class label. Similarly, each edge
(i, j) 2 E is associated with an input feature vector
�(xi,xj), derived from the node-level features, and
an output variable yi,j 2 {1, 2, · · · , L}, representing
the labels for the pair of nodes. We use  n(yi|xi,v)
and  e(yi,j |�(xi,xj),w) to denote the node-level
and the edge-level classification functions, respec-
tively. We call  n and  e factors, which can be ei-
ther normalized (e.g., probabilities) or unnormalized
quantities. The model parameters ✓ = [v,w] are to
be learned during training.

Does	  not	  model	  the	  dependency	  between	  comment	  labels	  	  
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x:	  feature	  vector	  extracted	  by	  
considering	  the	  comment	  and	  

the	  ques:on	  

y:	  class	  label	  



Three Approaches to Classification 

xi	  
xk	  

xj	  yi	  
yk	  

yj	  

•  Learn	  two	  classifiers	  separately	  and	  combine	  them	  in	  Inference	  
•  Works	  in	  three	  steps	  (Joty	  et	  al.	  2015,	  Pang	  &	  Lee,	  2004):	  

The framework has been applied to many NLP
structure prediction problems, including shallow
parsing (Punyakanok and Roth, 2000), semantic role
labeling (Punyakanok et al., 2004), and joint learn-
ing of entities and relations (Roth and Yih, 2004).
Further work explored the possibility of coupling
learning and inference in the previous setting. For
instance, Carreras et al. (2005) presented a model
for parsing that jointly trains several local decisions
with a perceptron-like algorithm that gets feedback
after inference. Punyakanok et al. (2005) studied
empirically and theoretically the cases in which this
inference-based learning strategy is superior to the
decoupled approach.

On the particular problem of comment classifica-
tion in cQA, we find some work exploiting thread-
level information. Hou et al. (2015) used features
about the position of the comment in the thread.
Barrón-Cedeño et al. (2015) developed more elab-
orated global features to model thread structure and
the interaction among users. Other work exploited
global inference algorithms at the thread-level. For
instance, (Zhou et al., 2015c; Zhou et al., 2015b;
Barrón-Cedeño et al., 2015) treated the task as se-
quential classification, using a variety of machine
learning algorithms to label the sequence of time-
sorted comments: LSTMs, CRFs, SVMhmm, etc.
Finally, Joty et al. (2015) showed that exploiting the
pairwise relations between comments (at any dis-
tance) is more effective than the sequential informa-
tion. Their results are the best on this task to date.
In this paper, we assume the same setting (cf. Sec-
tion 3) and we experiment with new models to do
learning jointly with inference in the same manner
as in (Punyakanok et al., 2005), and also using fully
connected pairwise CRFs.

3 Our Model

Given a forum question Q and a thread of answers
T = {A1, A2, · · · , An}, the task is to classify each
answer Ai in the thread into one of K possible
classes based on its relevance to the question. We
represent each thread as a fully-connected graph,
where each node represents an answer in the thread.

Given this setting, there exist at least three funda-
mentally different approaches to learn classification
functions.

First, the traditional approach of learning a local
classifier ignoring the structure in the output and us-
ing it to predict the label of each node Ai separately.
This approach only considers correlations between
the label of Ai and features extracted from Ai.

The second approach, adopted by Joty et al.
(2015), is to first learn two local classifiers sepa-
rately: (i) a node-level classifier to predict the label
for each individual node, and (ii) an edge-level clas-
sifier to predict whether the two nodes connected by
an edge should have the same label or not (assuming
a fully connected graph). The predictions of the lo-
cal classifiers are then used in a global inference al-
gorithm (e.g., graph-cut) to perform collective clas-
sification by maintaining structural constraints in the
output. There are two issues with this model: (i) the
local classifiers are trained separately; (ii) by decou-
pling learning from inference, this approach can lead
to suboptimal solutions, as Punyakanok et al. (2005)
pointed out.

The third approach, which we adopt in this pa-
per, is to model the dependencies between the out-
put variables while learning the classification func-
tions jointly by optimizing a global performance cri-
terion. The dependencies are captured using node-
level and edge-level factors defined over a fully con-
nected graph. The idea is that incorporating struc-
tural constraints in the form of all-pair relations dur-
ing training can yield a better solution that directly
optimizes an objective function for the target task.

Before we present our models in subsections 3.1
and 3.2, let us first introduce the notation that we
will use. Each thread T = {A1, A2, · · · , An} is
represented by a complete graph G = (V,E). Each
node i 2 V in the graph is associated with an input
vector xi, which represents the features of an an-
swer Ai, and an output variable yi 2 {1, 2, · · · ,K},
representing the class label. Similarly, each edge
(i, j) 2 E is associated with an input feature vector
�(xi,xj), derived from the node-level features, and
an output variable yi,j 2 {1, 2, · · · , L}, representing
the labels for the pair of nodes. We use  n(yi|xi,v)
and  e(yi,j |�(xi,xj),w) to denote the node-level
and the edge-level classification functions, respec-
tively. We call  n and  e factors, which can be ei-
ther normalized (e.g., probabilities) or unnormalized
quantities. The model parameters ✓ = [v,w] are to
be learned during training.

a)	  Learn	  a	  node-‐level	  classifier	  

b)	  Learn	  an	  edge-‐level	  classifier	  

The framework has been applied to many NLP
structure prediction problems, including shallow
parsing (Punyakanok and Roth, 2000), semantic role
labeling (Punyakanok et al., 2004), and joint learn-
ing of entities and relations (Roth and Yih, 2004).
Further work explored the possibility of coupling
learning and inference in the previous setting. For
instance, Carreras et al. (2005) presented a model
for parsing that jointly trains several local decisions
with a perceptron-like algorithm that gets feedback
after inference. Punyakanok et al. (2005) studied
empirically and theoretically the cases in which this
inference-based learning strategy is superior to the
decoupled approach.

On the particular problem of comment classifica-
tion in cQA, we find some work exploiting thread-
level information. Hou et al. (2015) used features
about the position of the comment in the thread.
Barrón-Cedeño et al. (2015) developed more elab-
orated global features to model thread structure and
the interaction among users. Other work exploited
global inference algorithms at the thread-level. For
instance, (Zhou et al., 2015c; Zhou et al., 2015b;
Barrón-Cedeño et al., 2015) treated the task as se-
quential classification, using a variety of machine
learning algorithms to label the sequence of time-
sorted comments: LSTMs, CRFs, SVMhmm, etc.
Finally, Joty et al. (2015) showed that exploiting the
pairwise relations between comments (at any dis-
tance) is more effective than the sequential informa-
tion. Their results are the best on this task to date.
In this paper, we assume the same setting (cf. Sec-
tion 3) and we experiment with new models to do
learning jointly with inference in the same manner
as in (Punyakanok et al., 2005), and also using fully
connected pairwise CRFs.

3 Our Model

Given a forum question Q and a thread of answers
T = {A1, A2, · · · , An}, the task is to classify each
answer Ai in the thread into one of K possible
classes based on its relevance to the question. We
represent each thread as a fully-connected graph,
where each node represents an answer in the thread.

Given this setting, there exist at least three funda-
mentally different approaches to learn classification
functions.

First, the traditional approach of learning a local
classifier ignoring the structure in the output and us-
ing it to predict the label of each node Ai separately.
This approach only considers correlations between
the label of Ai and features extracted from Ai.

The second approach, adopted by Joty et al.
(2015), is to first learn two local classifiers sepa-
rately: (i) a node-level classifier to predict the label
for each individual node, and (ii) an edge-level clas-
sifier to predict whether the two nodes connected by
an edge should have the same label or not (assuming
a fully connected graph). The predictions of the lo-
cal classifiers are then used in a global inference al-
gorithm (e.g., graph-cut) to perform collective clas-
sification by maintaining structural constraints in the
output. There are two issues with this model: (i) the
local classifiers are trained separately; (ii) by decou-
pling learning from inference, this approach can lead
to suboptimal solutions, as Punyakanok et al. (2005)
pointed out.

The third approach, which we adopt in this pa-
per, is to model the dependencies between the out-
put variables while learning the classification func-
tions jointly by optimizing a global performance cri-
terion. The dependencies are captured using node-
level and edge-level factors defined over a fully con-
nected graph. The idea is that incorporating struc-
tural constraints in the form of all-pair relations dur-
ing training can yield a better solution that directly
optimizes an objective function for the target task.

Before we present our models in subsections 3.1
and 3.2, let us first introduce the notation that we
will use. Each thread T = {A1, A2, · · · , An} is
represented by a complete graph G = (V,E). Each
node i 2 V in the graph is associated with an input
vector xi, which represents the features of an an-
swer Ai, and an output variable yi 2 {1, 2, · · · ,K},
representing the class label. Similarly, each edge
(i, j) 2 E is associated with an input feature vector
�(xi,xj), derived from the node-level features, and
an output variable yi,j 2 {1, 2, · · · , L}, representing
the labels for the pair of nodes. We use  n(yi|xi,v)
and  e(yi,j |�(xi,xj),w) to denote the node-level
and the edge-level classification functions, respec-
tively. We call  n and  e factors, which can be ei-
ther normalized (e.g., probabilities) or unnormalized
quantities. The model parameters ✓ = [v,w] are to
be learned during training.

c)	  Classify	  collec:vely	  using	  
global	  inference	  (ILP,	  Graph-‐cut)	  

Learning	  

Inference	  
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Approach	  2:	  



0.8 0.2 
0.95 

yi	  

yj	  

yk	  

s	   t	  

0.9 0.1 

0.5 0.5 

0.15 

Approach 2: Inference with Graph Cut 

Max-flow/min-cut 

Good	   Bad	  
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•  Decoupling	  learning	  from	  inference	  can	  lead	  to	  subop:mal	  
solu:ons	  (Punyakanok	  et	  al.,	  2005)	  

•  Oken	  requires	  a	  tuning	  parameter	  to	  control	  the	  rela:ve	  weights	  
of	  the	  two	  classifiers	  in	  the	  combina:on.	  



Three Approaches to Classification 

Approach	  3:	  Learn	  to	  classify	  with	  global	  inference	  (our	  approach)	  

•  Learn	  node-‐level	  &	  edge-‐level	  classifiers/poten:als	  from	  
global	  thread-‐level	  feedback	  given	  by	  an	  inference	  alg.	  

•  Classify	  collec:vely	  with	  global	  inference.	  

Models	  dependencies	  between	  output	  variables	  while	  learning.	  
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Poten:als	  could	  be	  normalized	  locally	  or	  globally	  



 Our Models 
Model	  1:	  Learn	  two	  local	  classifiers	  jointly	  with	  global	  feedback	  	  

xi	  
xk	  

xj	  yi	  
yk	  

yj	  

The framework has been applied to many NLP
structure prediction problems, including shallow
parsing (Punyakanok and Roth, 2000), semantic role
labeling (Punyakanok et al., 2004), and joint learn-
ing of entities and relations (Roth and Yih, 2004).
Further work explored the possibility of coupling
learning and inference in the previous setting. For
instance, Carreras et al. (2005) presented a model
for parsing that jointly trains several local decisions
with a perceptron-like algorithm that gets feedback
after inference. Punyakanok et al. (2005) studied
empirically and theoretically the cases in which this
inference-based learning strategy is superior to the
decoupled approach.

On the particular problem of comment classifica-
tion in cQA, we find some work exploiting thread-
level information. Hou et al. (2015) used features
about the position of the comment in the thread.
Barrón-Cedeño et al. (2015) developed more elab-
orated global features to model thread structure and
the interaction among users. Other work exploited
global inference algorithms at the thread-level. For
instance, (Zhou et al., 2015c; Zhou et al., 2015b;
Barrón-Cedeño et al., 2015) treated the task as se-
quential classification, using a variety of machine
learning algorithms to label the sequence of time-
sorted comments: LSTMs, CRFs, SVMhmm, etc.
Finally, Joty et al. (2015) showed that exploiting the
pairwise relations between comments (at any dis-
tance) is more effective than the sequential informa-
tion. Their results are the best on this task to date.
In this paper, we assume the same setting (cf. Sec-
tion 3) and we experiment with new models to do
learning jointly with inference in the same manner
as in (Punyakanok et al., 2005), and also using fully
connected pairwise CRFs.

3 Our Model

Given a forum question Q and a thread of answers
T = {A1, A2, · · · , An}, the task is to classify each
answer Ai in the thread into one of K possible
classes based on its relevance to the question. We
represent each thread as a fully-connected graph,
where each node represents an answer in the thread.

Given this setting, there exist at least three funda-
mentally different approaches to learn classification
functions.

First, the traditional approach of learning a local
classifier ignoring the structure in the output and us-
ing it to predict the label of each node Ai separately.
This approach only considers correlations between
the label of Ai and features extracted from Ai.

The second approach, adopted by Joty et al.
(2015), is to first learn two local classifiers sepa-
rately: (i) a node-level classifier to predict the label
for each individual node, and (ii) an edge-level clas-
sifier to predict whether the two nodes connected by
an edge should have the same label or not (assuming
a fully connected graph). The predictions of the lo-
cal classifiers are then used in a global inference al-
gorithm (e.g., graph-cut) to perform collective clas-
sification by maintaining structural constraints in the
output. There are two issues with this model: (i) the
local classifiers are trained separately; (ii) by decou-
pling learning from inference, this approach can lead
to suboptimal solutions, as Punyakanok et al. (2005)
pointed out.

The third approach, which we adopt in this pa-
per, is to model the dependencies between the out-
put variables while learning the classification func-
tions jointly by optimizing a global performance cri-
terion. The dependencies are captured using node-
level and edge-level factors defined over a fully con-
nected graph. The idea is that incorporating struc-
tural constraints in the form of all-pair relations dur-
ing training can yield a better solution that directly
optimizes an objective function for the target task.

Before we present our models in subsections 3.1
and 3.2, let us first introduce the notation that we
will use. Each thread T = {A1, A2, · · · , An} is
represented by a complete graph G = (V,E). Each
node i 2 V in the graph is associated with an input
vector xi, which represents the features of an an-
swer Ai, and an output variable yi 2 {1, 2, · · · ,K},
representing the class label. Similarly, each edge
(i, j) 2 E is associated with an input feature vector
�(xi,xj), derived from the node-level features, and
an output variable yi,j 2 {1, 2, · · · , L}, representing
the labels for the pair of nodes. We use  n(yi|xi,v)
and  e(yi,j |�(xi,xj),w) to denote the node-level
and the edge-level classification functions, respec-
tively. We call  n and  e factors, which can be ei-
ther normalized (e.g., probabilities) or unnormalized
quantities. The model parameters ✓ = [v,w] are to
be learned during training.

The framework has been applied to many NLP
structure prediction problems, including shallow
parsing (Punyakanok and Roth, 2000), semantic role
labeling (Punyakanok et al., 2004), and joint learn-
ing of entities and relations (Roth and Yih, 2004).
Further work explored the possibility of coupling
learning and inference in the previous setting. For
instance, Carreras et al. (2005) presented a model
for parsing that jointly trains several local decisions
with a perceptron-like algorithm that gets feedback
after inference. Punyakanok et al. (2005) studied
empirically and theoretically the cases in which this
inference-based learning strategy is superior to the
decoupled approach.

On the particular problem of comment classifica-
tion in cQA, we find some work exploiting thread-
level information. Hou et al. (2015) used features
about the position of the comment in the thread.
Barrón-Cedeño et al. (2015) developed more elab-
orated global features to model thread structure and
the interaction among users. Other work exploited
global inference algorithms at the thread-level. For
instance, (Zhou et al., 2015c; Zhou et al., 2015b;
Barrón-Cedeño et al., 2015) treated the task as se-
quential classification, using a variety of machine
learning algorithms to label the sequence of time-
sorted comments: LSTMs, CRFs, SVMhmm, etc.
Finally, Joty et al. (2015) showed that exploiting the
pairwise relations between comments (at any dis-
tance) is more effective than the sequential informa-
tion. Their results are the best on this task to date.
In this paper, we assume the same setting (cf. Sec-
tion 3) and we experiment with new models to do
learning jointly with inference in the same manner
as in (Punyakanok et al., 2005), and also using fully
connected pairwise CRFs.

3 Our Model

Given a forum question Q and a thread of answers
T = {A1, A2, · · · , An}, the task is to classify each
answer Ai in the thread into one of K possible
classes based on its relevance to the question. We
represent each thread as a fully-connected graph,
where each node represents an answer in the thread.

Given this setting, there exist at least three funda-
mentally different approaches to learn classification
functions.

First, the traditional approach of learning a local
classifier ignoring the structure in the output and us-
ing it to predict the label of each node Ai separately.
This approach only considers correlations between
the label of Ai and features extracted from Ai.

The second approach, adopted by Joty et al.
(2015), is to first learn two local classifiers sepa-
rately: (i) a node-level classifier to predict the label
for each individual node, and (ii) an edge-level clas-
sifier to predict whether the two nodes connected by
an edge should have the same label or not (assuming
a fully connected graph). The predictions of the lo-
cal classifiers are then used in a global inference al-
gorithm (e.g., graph-cut) to perform collective clas-
sification by maintaining structural constraints in the
output. There are two issues with this model: (i) the
local classifiers are trained separately; (ii) by decou-
pling learning from inference, this approach can lead
to suboptimal solutions, as Punyakanok et al. (2005)
pointed out.

The third approach, which we adopt in this pa-
per, is to model the dependencies between the out-
put variables while learning the classification func-
tions jointly by optimizing a global performance cri-
terion. The dependencies are captured using node-
level and edge-level factors defined over a fully con-
nected graph. The idea is that incorporating struc-
tural constraints in the form of all-pair relations dur-
ing training can yield a better solution that directly
optimizes an objective function for the target task.

Before we present our models in subsections 3.1
and 3.2, let us first introduce the notation that we
will use. Each thread T = {A1, A2, · · · , An} is
represented by a complete graph G = (V,E). Each
node i 2 V in the graph is associated with an input
vector xi, which represents the features of an an-
swer Ai, and an output variable yi 2 {1, 2, · · · ,K},
representing the class label. Similarly, each edge
(i, j) 2 E is associated with an input feature vector
�(xi,xj), derived from the node-level features, and
an output variable yi,j 2 {1, 2, · · · , L}, representing
the labels for the pair of nodes. We use  n(yi|xi,v)
and  e(yi,j |�(xi,xj),w) to denote the node-level
and the edge-level classification functions, respec-
tively. We call  n and  e factors, which can be ei-
ther normalized (e.g., probabilities) or unnormalized
quantities. The model parameters ✓ = [v,w] are to
be learned during training.

•  Node-‐level	  classifier:	  

3.1 Joint Learning of Two Classifiers with
Global Thread-Level Inference

Our aim is to train the local classifiers so that they
produce correct global classification. To this end, in
our first model we train the node- and the edge-level
classifiers jointly based on global feedback provided
by a global inference algorithm. The global feed-
back determines how much to adjust the local classi-
fiers so that the classifiers and the inference together
produce the desired result. We use log-linear models
(aka maximum entropy) for both classifiers:

 n(yi = k|xi,v) =

exp(v

T
k xi)PK

k0=1 exp(v
T
k xi)

(1)

 e(yi,j = l|�(xi,xj),w)=

exp(w

T
l �(xi,xj))PL

l0=1 exp(w
T
l0�(xi,xj))

(2)

The log likelihood (LL) for one data point (x,y)
(i.e., a thread) can be written as follows:

f(✓) =
X

i2V

KX

k=1

yki
⇥
v

T
k xi � logZ(v,xi)

⇤
+

X

(i,j)2E

LX

l=1

yli,j
⇥
w

T
l �(xi,xj)� logZ(w,xi,xj)

⇤
(3)

where yki and yli,j are the gold labels for i-th node
and (i, j)-th edge expressed in 1-of-K (or 1-of-L)
encoding, respectively, and Z(·) terms are the local
normalization constants.

We give a pseudocode in Algorithm 1 that trains
this model in an online fashion using feedback from
the loopy belief propagation (LBP) inference algo-
rithm (to be described later in Section 3.1.1). Specif-
ically, the marginals from the LBP are used in a
stochastic gradient descent (SGD) algorithm, which
has the following (minibatch) update rule:

✓t+1 = ✓t � ⌘t
1

N
f 0
(✓t) (4)

where ✓t and ⌘t are the model parameters and the
learning rate at step t, respectively, and 1

N f 0
(✓t) is

the mean gradient for the minibatch (a thread). For
our maximum entropy models, the gradients become

f 0
(v) =

X

i2V

[�n(yi)� yi] .xi (5)

f 0
(w) =

X

(i,j)2E

[�e(yi,j)� yi,j ] .�(xi,xj) (6)

Algorithm 1: Joint learning of local classifiers
with global thread-level inference

1. Initialize the model parameters v and w;
2. repeat

for each thread G = (V,E) do
a. Compute node and edge probabilities
 n(yi|xi,v) and  e(yi,j |�(xi,xj),w);
b. Infer node and edge marginals �n(yi)
and �e(yi,j) using sum-product LBP;
c. Update: v = v � ⌘

|V |f
0
(v);

d. Update: w = w � ⌘
|E|f

0
(w);

end
until convergence;

In the above equations, � and y are the marginals
and the gold labels, respectively.

Note that when applying the model to the test
threads, we need to perform the same global infer-
ence to get the best label assignments.

3.1.1 Inference Using Belief Propagation
Belief Propagation or BP (Pearl, 1988) is a mes-

sage passing algorithm for inference in probabilis-
tic graphical models. It supports (i) sum-product,
to compute the marginal distribution for each un-
observed variable, i.e., p(yi|x, ✓); and (ii) max-
product, to compute the most likely label configu-
ration, i.e., argmaxy p(y|x, ✓). We describe here
the variant that operates on undirected graphs (aka
Markov random fields) with pairwise factors, which
uses the following equations:

µi!j(yj) =

X

yi

 n(yi) e(yi,j)
Y

k2N(i)\j

µk!i(yi) (7)

�n(yi) ⇡  n(yi)
Y

j2N(i)

µj!i(yi) (8)

where µi!j is a message from node i to node j,
N(i) are the nodes neighbouring i, and  n(yi) and
 e(yi,j) are the node and the edge factors.

The algorithm proceeds by sending messages on
each edge until the node beliefs �n(yi) stabilize.
The edge beliefs can be written as follows:

�e(yi,j) ⇡  e(yi,j)⇥ µi!j(yi)⇥ µj!i(yj) (9)

•  Edge-‐level	  classifier:	  

3.1 Joint Learning of Two Classifiers with
Global Thread-Level Inference

Our aim is to train the local classifiers so that they
produce correct global classification. To this end, in
our first model we train the node- and the edge-level
classifiers jointly based on global feedback provided
by a global inference algorithm. The global feed-
back determines how much to adjust the local classi-
fiers so that the classifiers and the inference together
produce the desired result. We use log-linear models
(aka maximum entropy) for both classifiers:

 n(yi = k|xi,v) =

exp(v

T
k xi)PK

k0=1 exp(v
T
k xi)

(1)

 e(yi,j = l|�(xi,xj),w)=

exp(w

T
l �(xi,xj))PL

l0=1 exp(w
T
l0�(xi,xj))

(2)

The log likelihood (LL) for one data point (x,y)
(i.e., a thread) can be written as follows:

f(✓) =
X

i2V

KX

k=1

yki
⇥
v

T
k xi � logZ(v,xi)

⇤
+

X

(i,j)2E

LX

l=1

yli,j
⇥
w

T
l �(xi,xj)� logZ(w,xi,xj)

⇤
(3)

where yki and yli,j are the gold labels for i-th node
and (i, j)-th edge expressed in 1-of-K (or 1-of-L)
encoding, respectively, and Z(·) terms are the local
normalization constants.

We give a pseudocode in Algorithm 1 that trains
this model in an online fashion using feedback from
the loopy belief propagation (LBP) inference algo-
rithm (to be described later in Section 3.1.1). Specif-
ically, the marginals from the LBP are used in a
stochastic gradient descent (SGD) algorithm, which
has the following (minibatch) update rule:

✓t+1 = ✓t � ⌘t
1

N
f 0
(✓t) (4)

where ✓t and ⌘t are the model parameters and the
learning rate at step t, respectively, and 1

N f 0
(✓t) is

the mean gradient for the minibatch (a thread). For
our maximum entropy models, the gradients become

f 0
(v) =

X

i2V

[�n(yi)� yi] .xi (5)

f 0
(w) =

X

(i,j)2E

[�e(yi,j)� yi,j ] .�(xi,xj) (6)

Algorithm 1: Joint learning of local classifiers
with global thread-level inference

1. Initialize the model parameters v and w;
2. repeat

for each thread G = (V,E) do
a. Compute node and edge probabilities
 n(yi|xi,v) and  e(yi,j |�(xi,xj),w);
b. Infer node and edge marginals �n(yi)
and �e(yi,j) using sum-product LBP;
c. Update: v = v � ⌘

|V |f
0
(v);

d. Update: w = w � ⌘
|E|f

0
(w);

end
until convergence;

In the above equations, � and y are the marginals
and the gold labels, respectively.

Note that when applying the model to the test
threads, we need to perform the same global infer-
ence to get the best label assignments.

3.1.1 Inference Using Belief Propagation
Belief Propagation or BP (Pearl, 1988) is a mes-

sage passing algorithm for inference in probabilis-
tic graphical models. It supports (i) sum-product,
to compute the marginal distribution for each un-
observed variable, i.e., p(yi|x, ✓); and (ii) max-
product, to compute the most likely label configu-
ration, i.e., argmaxy p(y|x, ✓). We describe here
the variant that operates on undirected graphs (aka
Markov random fields) with pairwise factors, which
uses the following equations:

µi!j(yj) =

X

yi

 n(yi) e(yi,j)
Y

k2N(i)\j

µk!i(yi) (7)

�n(yi) ⇡  n(yi)
Y

j2N(i)

µj!i(yi) (8)

where µi!j is a message from node i to node j,
N(i) are the nodes neighbouring i, and  n(yi) and
 e(yi,j) are the node and the edge factors.

The algorithm proceeds by sending messages on
each edge until the node beliefs �n(yi) stabilize.
The edge beliefs can be written as follows:

�e(yi,j) ⇡  e(yi,j)⇥ µi!j(yi)⇥ µj!i(yj) (9)
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•  Node-‐level	  classifier:	  

3.1 Joint Learning of Two Classifiers with
Global Thread-Level Inference

Our aim is to train the local classifiers so that they
produce correct global classification. To this end, in
our first model we train the node- and the edge-level
classifiers jointly based on global feedback provided
by a global inference algorithm. The global feed-
back determines how much to adjust the local classi-
fiers so that the classifiers and the inference together
produce the desired result. We use log-linear models
(aka maximum entropy) for both classifiers:

 n(yi = k|xi,v) =

exp(v

T
k xi)PK

k0=1 exp(v
T
k xi)

(1)

 e(yi,j = l|�(xi,xj),w)=

exp(w

T
l �(xi,xj))PL

l0=1 exp(w
T
l0�(xi,xj))

(2)

The log likelihood (LL) for one data point (x,y)
(i.e., a thread) can be written as follows:

f(✓) =
X

i2V

KX

k=1

yki
⇥
v

T
k xi � logZ(v,xi)

⇤
+

X

(i,j)2E

LX

l=1

yli,j
⇥
w

T
l �(xi,xj)� logZ(w,xi,xj)

⇤
(3)

where yki and yli,j are the gold labels for i-th node
and (i, j)-th edge expressed in 1-of-K (or 1-of-L)
encoding, respectively, and Z(·) terms are the local
normalization constants.

We give a pseudocode in Algorithm 1 that trains
this model in an online fashion using feedback from
the loopy belief propagation (LBP) inference algo-
rithm (to be described later in Section 3.1.1). Specif-
ically, the marginals from the LBP are used in a
stochastic gradient descent (SGD) algorithm, which
has the following (minibatch) update rule:

✓t+1 = ✓t � ⌘t
1

N
f 0
(✓t) (4)

where ✓t and ⌘t are the model parameters and the
learning rate at step t, respectively, and 1

N f 0
(✓t) is

the mean gradient for the minibatch (a thread). For
our maximum entropy models, the gradients become

f 0
(v) =

X

i2V

[�n(yi)� yi] .xi (5)

f 0
(w) =

X

(i,j)2E

[�e(yi,j)� yi,j ] .�(xi,xj) (6)

Algorithm 1: Joint learning of local classifiers
with global thread-level inference

1. Initialize the model parameters v and w;
2. repeat

for each thread G = (V,E) do
a. Compute node and edge probabilities
 n(yi|xi,v) and  e(yi,j |�(xi,xj),w);
b. Infer node and edge marginals �n(yi)
and �e(yi,j) using sum-product LBP;
c. Update: v = v � ⌘

|V |f
0
(v);

d. Update: w = w � ⌘
|E|f

0
(w);

end
until convergence;

In the above equations, � and y are the marginals
and the gold labels, respectively.

Note that when applying the model to the test
threads, we need to perform the same global infer-
ence to get the best label assignments.

3.1.1 Inference Using Belief Propagation
Belief Propagation or BP (Pearl, 1988) is a mes-

sage passing algorithm for inference in probabilis-
tic graphical models. It supports (i) sum-product,
to compute the marginal distribution for each un-
observed variable, i.e., p(yi|x, ✓); and (ii) max-
product, to compute the most likely label configu-
ration, i.e., argmaxy p(y|x, ✓). We describe here
the variant that operates on undirected graphs (aka
Markov random fields) with pairwise factors, which
uses the following equations:

µi!j(yj) =

X

yi

 n(yi) e(yi,j)
Y

k2N(i)\j

µk!i(yi) (7)

�n(yi) ⇡  n(yi)
Y

j2N(i)

µj!i(yi) (8)

where µi!j is a message from node i to node j,
N(i) are the nodes neighbouring i, and  n(yi) and
 e(yi,j) are the node and the edge factors.

The algorithm proceeds by sending messages on
each edge until the node beliefs �n(yi) stabilize.
The edge beliefs can be written as follows:

�e(yi,j) ⇡  e(yi,j)⇥ µi!j(yi)⇥ µj!i(yj) (9)

•  Edge-‐level	  classifier:	  

3.1 Joint Learning of Two Classifiers with
Global Thread-Level Inference

Our aim is to train the local classifiers so that they
produce correct global classification. To this end, in
our first model we train the node- and the edge-level
classifiers jointly based on global feedback provided
by a global inference algorithm. The global feed-
back determines how much to adjust the local classi-
fiers so that the classifiers and the inference together
produce the desired result. We use log-linear models
(aka maximum entropy) for both classifiers:

 n(yi = k|xi,v) =

exp(v

T
k xi)PK

k0=1 exp(v
T
k xi)

(1)

 e(yi,j = l|�(xi,xj),w)=

exp(w

T
l �(xi,xj))PL

l0=1 exp(w
T
l0�(xi,xj))

(2)

The log likelihood (LL) for one data point (x,y)
(i.e., a thread) can be written as follows:

f(✓) =
X

i2V

KX

k=1

yki
⇥
v

T
k xi � logZ(v,xi)

⇤
+

X

(i,j)2E

LX

l=1

yli,j
⇥
w

T
l �(xi,xj)� logZ(w,xi,xj)

⇤
(3)

where yki and yli,j are the gold labels for i-th node
and (i, j)-th edge expressed in 1-of-K (or 1-of-L)
encoding, respectively, and Z(·) terms are the local
normalization constants.

We give a pseudocode in Algorithm 1 that trains
this model in an online fashion using feedback from
the loopy belief propagation (LBP) inference algo-
rithm (to be described later in Section 3.1.1). Specif-
ically, the marginals from the LBP are used in a
stochastic gradient descent (SGD) algorithm, which
has the following (minibatch) update rule:

✓t+1 = ✓t � ⌘t
1

N
f 0
(✓t) (4)

where ✓t and ⌘t are the model parameters and the
learning rate at step t, respectively, and 1

N f 0
(✓t) is

the mean gradient for the minibatch (a thread). For
our maximum entropy models, the gradients become

f 0
(v) =

X

i2V

[�n(yi)� yi] .xi (5)

f 0
(w) =

X

(i,j)2E

[�e(yi,j)� yi,j ] .�(xi,xj) (6)

Algorithm 1: Joint learning of local classifiers
with global thread-level inference

1. Initialize the model parameters v and w;
2. repeat

for each thread G = (V,E) do
a. Compute node and edge probabilities
 n(yi|xi,v) and  e(yi,j |�(xi,xj),w);
b. Infer node and edge marginals �n(yi)
and �e(yi,j) using sum-product LBP;
c. Update: v = v � ⌘

|V |f
0
(v);

d. Update: w = w � ⌘
|E|f

0
(w);

end
until convergence;

In the above equations, � and y are the marginals
and the gold labels, respectively.

Note that when applying the model to the test
threads, we need to perform the same global infer-
ence to get the best label assignments.

3.1.1 Inference Using Belief Propagation
Belief Propagation or BP (Pearl, 1988) is a mes-

sage passing algorithm for inference in probabilis-
tic graphical models. It supports (i) sum-product,
to compute the marginal distribution for each un-
observed variable, i.e., p(yi|x, ✓); and (ii) max-
product, to compute the most likely label configu-
ration, i.e., argmaxy p(y|x, ✓). We describe here
the variant that operates on undirected graphs (aka
Markov random fields) with pairwise factors, which
uses the following equations:

µi!j(yj) =

X

yi

 n(yi) e(yi,j)
Y

k2N(i)\j

µk!i(yi) (7)

�n(yi) ⇡  n(yi)
Y

j2N(i)

µj!i(yi) (8)

where µi!j is a message from node i to node j,
N(i) are the nodes neighbouring i, and  n(yi) and
 e(yi,j) are the node and the edge factors.

The algorithm proceeds by sending messages on
each edge until the node beliefs �n(yi) stabilize.
The edge beliefs can be written as follows:

�e(yi,j) ⇡  e(yi,j)⇥ µi!j(yi)⇥ µj!i(yj) (9)

3.1 Joint Learning of Two Classifiers with
Global Thread-Level Inference

Our aim is to train the local classifiers so that they
produce correct global classification. To this end, in
our first model we train the node- and the edge-level
classifiers jointly based on global feedback provided
by a global inference algorithm. The global feed-
back determines how much to adjust the local classi-
fiers so that the classifiers and the inference together
produce the desired result. We use log-linear models
(aka maximum entropy) for both classifiers:

 n(yi = k|xi,v) =

exp(v

T
k xi)PK

k0=1 exp(v
T
k xi)

(1)

 e(yi,j = l|�(xi,xj),w)=

exp(w

T
l �(xi,xj))PL

l0=1 exp(w
T
l0�(xi,xj))

(2)

The log likelihood (LL) for one data point (x,y)
(i.e., a thread) can be written as follows:

f(✓) =
X

i2V

KX

k=1

yki
⇥
v

T
k xi � logZ(v,xi)

⇤
+

X

(i,j)2E

LX

l=1

yli,j
⇥
w

T
l �(xi,xj)� logZ(w,xi,xj)

⇤
(3)

where yki and yli,j are the gold labels for i-th node
and (i, j)-th edge expressed in 1-of-K (or 1-of-L)
encoding, respectively, and Z(·) terms are the local
normalization constants.

We give a pseudocode in Algorithm 1 that trains
this model in an online fashion using feedback from
the loopy belief propagation (LBP) inference algo-
rithm (to be described later in Section 3.1.1). Specif-
ically, the marginals from the LBP are used in a
stochastic gradient descent (SGD) algorithm, which
has the following (minibatch) update rule:

✓t+1 = ✓t � ⌘t
1

N
f 0
(✓t) (4)

where ✓t and ⌘t are the model parameters and the
learning rate at step t, respectively, and 1

N f 0
(✓t) is

the mean gradient for the minibatch (a thread). For
our maximum entropy models, the gradients become

f 0
(v) =

X

i2V

[�n(yi)� yi] .xi (5)

f 0
(w) =

X

(i,j)2E

[�e(yi,j)� yi,j ] .�(xi,xj) (6)

Algorithm 1: Joint learning of local classifiers
with global thread-level inference

1. Initialize the model parameters v and w;
2. repeat

for each thread G = (V,E) do
a. Compute node and edge probabilities
 n(yi|xi,v) and  e(yi,j |�(xi,xj),w);
b. Infer node and edge marginals �n(yi)
and �e(yi,j) using sum-product LBP;
c. Update: v = v � ⌘

|V |f
0
(v);

d. Update: w = w � ⌘
|E|f

0
(w);

end
until convergence;

In the above equations, � and y are the marginals
and the gold labels, respectively.

Note that when applying the model to the test
threads, we need to perform the same global infer-
ence to get the best label assignments.

3.1.1 Inference Using Belief Propagation
Belief Propagation or BP (Pearl, 1988) is a mes-

sage passing algorithm for inference in probabilis-
tic graphical models. It supports (i) sum-product,
to compute the marginal distribution for each un-
observed variable, i.e., p(yi|x, ✓); and (ii) max-
product, to compute the most likely label configu-
ration, i.e., argmaxy p(y|x, ✓). We describe here
the variant that operates on undirected graphs (aka
Markov random fields) with pairwise factors, which
uses the following equations:

µi!j(yj) =

X

yi

 n(yi) e(yi,j)
Y

k2N(i)\j

µk!i(yi) (7)

�n(yi) ⇡  n(yi)
Y

j2N(i)

µj!i(yi) (8)

where µi!j is a message from node i to node j,
N(i) are the nodes neighbouring i, and  n(yi) and
 e(yi,j) are the node and the edge factors.

The algorithm proceeds by sending messages on
each edge until the node beliefs �n(yi) stabilize.
The edge beliefs can be written as follows:

�e(yi,j) ⇡  e(yi,j)⇥ µi!j(yi)⇥ µj!i(yj) (9)
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 Limitations of Model 1 

•  Local	  normaliza:on	  leads	  to	  label	  bias	  problem.	  	  

xi	  
xk	  

xj	  yi	  
yk	  

yj	  

The framework has been applied to many NLP
structure prediction problems, including shallow
parsing (Punyakanok and Roth, 2000), semantic role
labeling (Punyakanok et al., 2004), and joint learn-
ing of entities and relations (Roth and Yih, 2004).
Further work explored the possibility of coupling
learning and inference in the previous setting. For
instance, Carreras et al. (2005) presented a model
for parsing that jointly trains several local decisions
with a perceptron-like algorithm that gets feedback
after inference. Punyakanok et al. (2005) studied
empirically and theoretically the cases in which this
inference-based learning strategy is superior to the
decoupled approach.

On the particular problem of comment classifica-
tion in cQA, we find some work exploiting thread-
level information. Hou et al. (2015) used features
about the position of the comment in the thread.
Barrón-Cedeño et al. (2015) developed more elab-
orated global features to model thread structure and
the interaction among users. Other work exploited
global inference algorithms at the thread-level. For
instance, (Zhou et al., 2015c; Zhou et al., 2015b;
Barrón-Cedeño et al., 2015) treated the task as se-
quential classification, using a variety of machine
learning algorithms to label the sequence of time-
sorted comments: LSTMs, CRFs, SVMhmm, etc.
Finally, Joty et al. (2015) showed that exploiting the
pairwise relations between comments (at any dis-
tance) is more effective than the sequential informa-
tion. Their results are the best on this task to date.
In this paper, we assume the same setting (cf. Sec-
tion 3) and we experiment with new models to do
learning jointly with inference in the same manner
as in (Punyakanok et al., 2005), and also using fully
connected pairwise CRFs.

3 Our Model

Given a forum question Q and a thread of answers
T = {A1, A2, · · · , An}, the task is to classify each
answer Ai in the thread into one of K possible
classes based on its relevance to the question. We
represent each thread as a fully-connected graph,
where each node represents an answer in the thread.

Given this setting, there exist at least three funda-
mentally different approaches to learn classification
functions.

First, the traditional approach of learning a local
classifier ignoring the structure in the output and us-
ing it to predict the label of each node Ai separately.
This approach only considers correlations between
the label of Ai and features extracted from Ai.

The second approach, adopted by Joty et al.
(2015), is to first learn two local classifiers sepa-
rately: (i) a node-level classifier to predict the label
for each individual node, and (ii) an edge-level clas-
sifier to predict whether the two nodes connected by
an edge should have the same label or not (assuming
a fully connected graph). The predictions of the lo-
cal classifiers are then used in a global inference al-
gorithm (e.g., graph-cut) to perform collective clas-
sification by maintaining structural constraints in the
output. There are two issues with this model: (i) the
local classifiers are trained separately; (ii) by decou-
pling learning from inference, this approach can lead
to suboptimal solutions, as Punyakanok et al. (2005)
pointed out.

The third approach, which we adopt in this pa-
per, is to model the dependencies between the out-
put variables while learning the classification func-
tions jointly by optimizing a global performance cri-
terion. The dependencies are captured using node-
level and edge-level factors defined over a fully con-
nected graph. The idea is that incorporating struc-
tural constraints in the form of all-pair relations dur-
ing training can yield a better solution that directly
optimizes an objective function for the target task.

Before we present our models in subsections 3.1
and 3.2, let us first introduce the notation that we
will use. Each thread T = {A1, A2, · · · , An} is
represented by a complete graph G = (V,E). Each
node i 2 V in the graph is associated with an input
vector xi, which represents the features of an an-
swer Ai, and an output variable yi 2 {1, 2, · · · ,K},
representing the class label. Similarly, each edge
(i, j) 2 E is associated with an input feature vector
�(xi,xj), derived from the node-level features, and
an output variable yi,j 2 {1, 2, · · · , L}, representing
the labels for the pair of nodes. We use  n(yi|xi,v)
and  e(yi,j |�(xi,xj),w) to denote the node-level
and the edge-level classification functions, respec-
tively. We call  n and  e factors, which can be ei-
ther normalized (e.g., probabilities) or unnormalized
quantities. The model parameters ✓ = [v,w] are to
be learned during training.

The framework has been applied to many NLP
structure prediction problems, including shallow
parsing (Punyakanok and Roth, 2000), semantic role
labeling (Punyakanok et al., 2004), and joint learn-
ing of entities and relations (Roth and Yih, 2004).
Further work explored the possibility of coupling
learning and inference in the previous setting. For
instance, Carreras et al. (2005) presented a model
for parsing that jointly trains several local decisions
with a perceptron-like algorithm that gets feedback
after inference. Punyakanok et al. (2005) studied
empirically and theoretically the cases in which this
inference-based learning strategy is superior to the
decoupled approach.

On the particular problem of comment classifica-
tion in cQA, we find some work exploiting thread-
level information. Hou et al. (2015) used features
about the position of the comment in the thread.
Barrón-Cedeño et al. (2015) developed more elab-
orated global features to model thread structure and
the interaction among users. Other work exploited
global inference algorithms at the thread-level. For
instance, (Zhou et al., 2015c; Zhou et al., 2015b;
Barrón-Cedeño et al., 2015) treated the task as se-
quential classification, using a variety of machine
learning algorithms to label the sequence of time-
sorted comments: LSTMs, CRFs, SVMhmm, etc.
Finally, Joty et al. (2015) showed that exploiting the
pairwise relations between comments (at any dis-
tance) is more effective than the sequential informa-
tion. Their results are the best on this task to date.
In this paper, we assume the same setting (cf. Sec-
tion 3) and we experiment with new models to do
learning jointly with inference in the same manner
as in (Punyakanok et al., 2005), and also using fully
connected pairwise CRFs.

3 Our Model

Given a forum question Q and a thread of answers
T = {A1, A2, · · · , An}, the task is to classify each
answer Ai in the thread into one of K possible
classes based on its relevance to the question. We
represent each thread as a fully-connected graph,
where each node represents an answer in the thread.

Given this setting, there exist at least three funda-
mentally different approaches to learn classification
functions.

First, the traditional approach of learning a local
classifier ignoring the structure in the output and us-
ing it to predict the label of each node Ai separately.
This approach only considers correlations between
the label of Ai and features extracted from Ai.

The second approach, adopted by Joty et al.
(2015), is to first learn two local classifiers sepa-
rately: (i) a node-level classifier to predict the label
for each individual node, and (ii) an edge-level clas-
sifier to predict whether the two nodes connected by
an edge should have the same label or not (assuming
a fully connected graph). The predictions of the lo-
cal classifiers are then used in a global inference al-
gorithm (e.g., graph-cut) to perform collective clas-
sification by maintaining structural constraints in the
output. There are two issues with this model: (i) the
local classifiers are trained separately; (ii) by decou-
pling learning from inference, this approach can lead
to suboptimal solutions, as Punyakanok et al. (2005)
pointed out.

The third approach, which we adopt in this pa-
per, is to model the dependencies between the out-
put variables while learning the classification func-
tions jointly by optimizing a global performance cri-
terion. The dependencies are captured using node-
level and edge-level factors defined over a fully con-
nected graph. The idea is that incorporating struc-
tural constraints in the form of all-pair relations dur-
ing training can yield a better solution that directly
optimizes an objective function for the target task.

Before we present our models in subsections 3.1
and 3.2, let us first introduce the notation that we
will use. Each thread T = {A1, A2, · · · , An} is
represented by a complete graph G = (V,E). Each
node i 2 V in the graph is associated with an input
vector xi, which represents the features of an an-
swer Ai, and an output variable yi 2 {1, 2, · · · ,K},
representing the class label. Similarly, each edge
(i, j) 2 E is associated with an input feature vector
�(xi,xj), derived from the node-level features, and
an output variable yi,j 2 {1, 2, · · · , L}, representing
the labels for the pair of nodes. We use  n(yi|xi,v)
and  e(yi,j |�(xi,xj),w) to denote the node-level
and the edge-level classification functions, respec-
tively. We call  n and  e factors, which can be ei-
ther normalized (e.g., probabilities) or unnormalized
quantities. The model parameters ✓ = [v,w] are to
be learned during training.

•  Local	  classifiers	  use	  their	  own	  feature	  sets,	  which	  may	  
not	  work	  well	  when	  trained	  with	  global	  feedback.	  
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The framework has been applied to many NLP
structure prediction problems, including shallow
parsing (Punyakanok and Roth, 2000), semantic role
labeling (Punyakanok et al., 2004), and joint learn-
ing of entities and relations (Roth and Yih, 2004).
Further work explored the possibility of coupling
learning and inference in the previous setting. For
instance, Carreras et al. (2005) presented a model
for parsing that jointly trains several local decisions
with a perceptron-like algorithm that gets feedback
after inference. Punyakanok et al. (2005) studied
empirically and theoretically the cases in which this
inference-based learning strategy is superior to the
decoupled approach.

On the particular problem of comment classifica-
tion in cQA, we find some work exploiting thread-
level information. Hou et al. (2015) used features
about the position of the comment in the thread.
Barrón-Cedeño et al. (2015) developed more elab-
orated global features to model thread structure and
the interaction among users. Other work exploited
global inference algorithms at the thread-level. For
instance, (Zhou et al., 2015c; Zhou et al., 2015b;
Barrón-Cedeño et al., 2015) treated the task as se-
quential classification, using a variety of machine
learning algorithms to label the sequence of time-
sorted comments: LSTMs, CRFs, SVMhmm, etc.
Finally, Joty et al. (2015) showed that exploiting the
pairwise relations between comments (at any dis-
tance) is more effective than the sequential informa-
tion. Their results are the best on this task to date.
In this paper, we assume the same setting (cf. Sec-
tion 3) and we experiment with new models to do
learning jointly with inference in the same manner
as in (Punyakanok et al., 2005), and also using fully
connected pairwise CRFs.

3 Our Model

Given a forum question Q and a thread of answers
T = {A1, A2, · · · , An}, the task is to classify each
answer Ai in the thread into one of K possible
classes based on its relevance to the question. We
represent each thread as a fully-connected graph,
where each node represents an answer in the thread.

Given this setting, there exist at least three funda-
mentally different approaches to learn classification
functions.

First, the traditional approach of learning a local
classifier ignoring the structure in the output and us-
ing it to predict the label of each node Ai separately.
This approach only considers correlations between
the label of Ai and features extracted from Ai.

The second approach, adopted by Joty et al.
(2015), is to first learn two local classifiers sepa-
rately: (i) a node-level classifier to predict the label
for each individual node, and (ii) an edge-level clas-
sifier to predict whether the two nodes connected by
an edge should have the same label or not (assuming
a fully connected graph). The predictions of the lo-
cal classifiers are then used in a global inference al-
gorithm (e.g., graph-cut) to perform collective clas-
sification by maintaining structural constraints in the
output. There are two issues with this model: (i) the
local classifiers are trained separately; (ii) by decou-
pling learning from inference, this approach can lead
to suboptimal solutions, as Punyakanok et al. (2005)
pointed out.

The third approach, which we adopt in this pa-
per, is to model the dependencies between the out-
put variables while learning the classification func-
tions jointly by optimizing a global performance cri-
terion. The dependencies are captured using node-
level and edge-level factors defined over a fully con-
nected graph. The idea is that incorporating struc-
tural constraints in the form of all-pair relations dur-
ing training can yield a better solution that directly
optimizes an objective function for the target task.

Before we present our models in subsections 3.1
and 3.2, let us first introduce the notation that we
will use. Each thread T = {A1, A2, · · · , An} is
represented by a complete graph G = (V,E). Each
node i 2 V in the graph is associated with an input
vector xi, which represents the features of an an-
swer Ai, and an output variable yi 2 {1, 2, · · · ,K},
representing the class label. Similarly, each edge
(i, j) 2 E is associated with an input feature vector
�(xi,xj), derived from the node-level features, and
an output variable yi,j 2 {1, 2, · · · , L}, representing
the labels for the pair of nodes. We use  n(yi|xi,v)
and  e(yi,j |�(xi,xj),w) to denote the node-level
and the edge-level classification functions, respec-
tively. We call  n and  e factors, which can be ei-
ther normalized (e.g., probabilities) or unnormalized
quantities. The model parameters ✓ = [v,w] are to
be learned during training.

The framework has been applied to many NLP
structure prediction problems, including shallow
parsing (Punyakanok and Roth, 2000), semantic role
labeling (Punyakanok et al., 2004), and joint learn-
ing of entities and relations (Roth and Yih, 2004).
Further work explored the possibility of coupling
learning and inference in the previous setting. For
instance, Carreras et al. (2005) presented a model
for parsing that jointly trains several local decisions
with a perceptron-like algorithm that gets feedback
after inference. Punyakanok et al. (2005) studied
empirically and theoretically the cases in which this
inference-based learning strategy is superior to the
decoupled approach.

On the particular problem of comment classifica-
tion in cQA, we find some work exploiting thread-
level information. Hou et al. (2015) used features
about the position of the comment in the thread.
Barrón-Cedeño et al. (2015) developed more elab-
orated global features to model thread structure and
the interaction among users. Other work exploited
global inference algorithms at the thread-level. For
instance, (Zhou et al., 2015c; Zhou et al., 2015b;
Barrón-Cedeño et al., 2015) treated the task as se-
quential classification, using a variety of machine
learning algorithms to label the sequence of time-
sorted comments: LSTMs, CRFs, SVMhmm, etc.
Finally, Joty et al. (2015) showed that exploiting the
pairwise relations between comments (at any dis-
tance) is more effective than the sequential informa-
tion. Their results are the best on this task to date.
In this paper, we assume the same setting (cf. Sec-
tion 3) and we experiment with new models to do
learning jointly with inference in the same manner
as in (Punyakanok et al., 2005), and also using fully
connected pairwise CRFs.

3 Our Model

Given a forum question Q and a thread of answers
T = {A1, A2, · · · , An}, the task is to classify each
answer Ai in the thread into one of K possible
classes based on its relevance to the question. We
represent each thread as a fully-connected graph,
where each node represents an answer in the thread.

Given this setting, there exist at least three funda-
mentally different approaches to learn classification
functions.

First, the traditional approach of learning a local
classifier ignoring the structure in the output and us-
ing it to predict the label of each node Ai separately.
This approach only considers correlations between
the label of Ai and features extracted from Ai.

The second approach, adopted by Joty et al.
(2015), is to first learn two local classifiers sepa-
rately: (i) a node-level classifier to predict the label
for each individual node, and (ii) an edge-level clas-
sifier to predict whether the two nodes connected by
an edge should have the same label or not (assuming
a fully connected graph). The predictions of the lo-
cal classifiers are then used in a global inference al-
gorithm (e.g., graph-cut) to perform collective clas-
sification by maintaining structural constraints in the
output. There are two issues with this model: (i) the
local classifiers are trained separately; (ii) by decou-
pling learning from inference, this approach can lead
to suboptimal solutions, as Punyakanok et al. (2005)
pointed out.

The third approach, which we adopt in this pa-
per, is to model the dependencies between the out-
put variables while learning the classification func-
tions jointly by optimizing a global performance cri-
terion. The dependencies are captured using node-
level and edge-level factors defined over a fully con-
nected graph. The idea is that incorporating struc-
tural constraints in the form of all-pair relations dur-
ing training can yield a better solution that directly
optimizes an objective function for the target task.

Before we present our models in subsections 3.1
and 3.2, let us first introduce the notation that we
will use. Each thread T = {A1, A2, · · · , An} is
represented by a complete graph G = (V,E). Each
node i 2 V in the graph is associated with an input
vector xi, which represents the features of an an-
swer Ai, and an output variable yi 2 {1, 2, · · · ,K},
representing the class label. Similarly, each edge
(i, j) 2 E is associated with an input feature vector
�(xi,xj), derived from the node-level features, and
an output variable yi,j 2 {1, 2, · · · , L}, representing
the labels for the pair of nodes. We use  n(yi|xi,v)
and  e(yi,j |�(xi,xj),w) to denote the node-level
and the edge-level classification functions, respec-
tively. We call  n and  e factors, which can be ei-
ther normalized (e.g., probabilities) or unnormalized
quantities. The model parameters ✓ = [v,w] are to
be learned during training.
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Figure 2: Graphical representation of our two joint models: (a) a joint model with locally normalized factors;
(b) a joint model with global normalization, i.e., a fully connected conditional random field.

The node and the edge marginals are then com-
puted by normalizing the node and the edge beliefs,
respectively. By replacing the summation with a
max operation in Equation 7, we can get the most
likely label configuration (i.e., argmax over labels).

BP is guaranteed to converge to an exact solution
if the graph is a tree. However, exact inference is in-
tractable for general graphs, i.e., graphs with loops.
Despite this, it has been advocated by Pearl (1988) to
use BP in loopy graphs as an approximation scheme;
see also (Murphy, 2012), page 768. The algorithm is
then called “loopy” BP, or LBP. Although LBP gives
approximate solutions for general graphs, it often
works well in practice (Murphy et al., 1999), outper-
forming other methods such as mean field (Weiss,
2001) and graph-cut (Burfoot et al., 2011).

It is important to mention that the approach
presented above (i.e., subsection 3.1) is similar
in spirit to the approach of Collins (2002), Car-
reras and Màrquez (2003) and Punyakanok et al.
(2005). The main difference is that they use a
Perceptron-like online algorithm, where the up-
dates are done based on the best label configuration
(i.e., argmaxy p(y|x, ✓)) rather than the marginals.

One can use graph-cut (applicable only for binary
output variables) or max-product LBP for the decod-
ing task. However, this yields a discontinuous esti-
mate (even with averaged perceptron) for the gra-
dient (see Section 5). For the same reason, we use
sum-product LBP rather than max-product LBP.

3.2 A Joint Model with Global Normalization

Although the approach of updating the parameters
of the local classifiers based on the global inference
might seem like a natural extension to train the clas-
sifiers jointly, it suffers from at least two problems.
First, since the node and the edge scores are nor-
malized locally (see Equations 1 and 2), this ap-
proach leads to the so-called label bias problem, pre-
viously discussed by Lafferty et al. (2001). Namely,
due to the local normalization, local features at any
node do not influence states of other nodes in the
graph. Second, the two classifiers use their own fea-
ture sets. However, the same feature sets that give
optimal results locally (i.e., when trained on local
objectives), may not work well when the models are
trained jointly based on the global feedback. In or-
der to address these issues, below we propose a dif-
ferent model.

In our second approach, we seek to build a joint
model with global normalization. We define the fol-
lowing conditional joint distribution:

p(y|v,w,x) =
1

Z(v,w,x)

Y

i2V

 n(yi|x,v) ·

Y

(i,j)2E

 e(yi,j |x,w) (10)

where  n and  e are the node and edge factors, and
Z(·) is the global normalization constant that en-
sures a valid probability distribution.
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Figure 2: Graphical representation of our two joint models: (a) a joint model with locally normalized factors;
(b) a joint model with global normalization, i.e., a fully connected conditional random field.

The node and the edge marginals are then com-
puted by normalizing the node and the edge beliefs,
respectively. By replacing the summation with a
max operation in Equation 7, we can get the most
likely label configuration (i.e., argmax over labels).

BP is guaranteed to converge to an exact solution
if the graph is a tree. However, exact inference is in-
tractable for general graphs, i.e., graphs with loops.
Despite this, it has been advocated by Pearl (1988) to
use BP in loopy graphs as an approximation scheme;
see also (Murphy, 2012), page 768. The algorithm is
then called “loopy” BP, or LBP. Although LBP gives
approximate solutions for general graphs, it often
works well in practice (Murphy et al., 1999), outper-
forming other methods such as mean field (Weiss,
2001) and graph-cut (Burfoot et al., 2011).

It is important to mention that the approach
presented above (i.e., subsection 3.1) is similar
in spirit to the approach of Collins (2002), Car-
reras and Màrquez (2003) and Punyakanok et al.
(2005). The main difference is that they use a
Perceptron-like online algorithm, where the up-
dates are done based on the best label configuration
(i.e., argmaxy p(y|x, ✓)) rather than the marginals.

One can use graph-cut (applicable only for binary
output variables) or max-product LBP for the decod-
ing task. However, this yields a discontinuous esti-
mate (even with averaged perceptron) for the gra-
dient (see Section 5). For the same reason, we use
sum-product LBP rather than max-product LBP.

3.2 A Joint Model with Global Normalization

Although the approach of updating the parameters
of the local classifiers based on the global inference
might seem like a natural extension to train the clas-
sifiers jointly, it suffers from at least two problems.
First, since the node and the edge scores are nor-
malized locally (see Equations 1 and 2), this ap-
proach leads to the so-called label bias problem, pre-
viously discussed by Lafferty et al. (2001). Namely,
due to the local normalization, local features at any
node do not influence states of other nodes in the
graph. Second, the two classifiers use their own fea-
ture sets. However, the same feature sets that give
optimal results locally (i.e., when trained on local
objectives), may not work well when the models are
trained jointly based on the global feedback. In or-
der to address these issues, below we propose a dif-
ferent model.

In our second approach, we seek to build a joint
model with global normalization. We define the fol-
lowing conditional joint distribution:

p(y|v,w,x) =
1

Z(v,w,x)

Y

i2V

 n(yi|x,v) ·

Y

(i,j)2E

 e(yi,j |x,w) (10)

where  n and  e are the node and edge factors, and
Z(·) is the global normalization constant that en-
sures a valid probability distribution.

This model is essentially a fully connected condi-
tional random field or FCCRF (Murphy, 2012). Fig-
ure 2 shows the differences between the two models
with the standard graphical model representation.4

The global normalization allows CRFs to take long-
range interactions into account. Similar to our pre-
vious model, we use a log-linear representation for
the factors:

 n(yi|x,v) = exp(v

T�(yi,x)) (11)
 e(yi,j |x,w) = exp(w

T�(yi,j ,x)) (12)

where �(·) is a feature vector derived from the inputs
and the labels. The LL for one data point becomes

f(✓) =
X

i2V

v

T�(yi,x) +
X

(i,j)2E

w

T�(yi,j ,x)

� logZ(v,w,x) (13)

This objective is convex, so we can use gradient-
based methods to find the global optimum. The gra-
dients have the following form:

f 0
(v) =

X

i2V

�(yi,x)� E[�(yi,x)] (14)

f 0
(w) =

X

(i,j)2E

�(yi,j ,x)� E[�(yi,j ,x)] (15)

where E[�(.)] terms denote the expected feature vec-
tor. Traditionally, CRFs have been trained using of-
fline methods like limited-memory BFGS. Online
training of CRFs using SGD was proposed by Vish-
wanathan et al. (2006). To compare our two meth-
ods, we use SGD to train our CRF models. The
pseudocode is very similar to Algorithm 1.

3.2.1 Modeling Edge Factors
One crucial aspect in the joint models described

above is the modeling of edge factors. The tradi-
tional way is to define edge factors, where yi,j spans
over all possible state transitions, that is K2 differ-
ent transitions, each of which is associated with a
weight vector. This method has the advantage that
it models transitions in a fine-grained way, but, in
doing so, it also increases the number of model pa-
rameters, which may result in overfitting.

4Edge level features and output variables are not shown in
Figure 2 to avoid visual clutter.

Alternatively, one can define Ising-like edge fac-
tors, where we only distinguish between two transi-
tions: (i) same, when yi = yj and (ii) different, when
yi 6= yj . This modeling involves tying one set of pa-
rameters for all same transitions, and another set for
all different transitions.

4 Experimental Setting

In this section, we describe our experimental set-
ting. We first introduce the dataset we use, then we
present the features and the models that we compare.

4.1 Datasets and Evaluation

We experimented with the dataset from SemEval-
2015 Task 3 on Answer Selection for Community
Question Answering (Nakov et al., 2015). The
dataset contains question-answer threads from the
Qatar Living forum.5 Each thread consists of a ques-
tion followed by one or more (up to 143) comments.
The dataset is split into training, development and
test sets, with 2,600, 300, and 329 questions, and
16,541, 1,645, and 1,976 answers, respectively.

Each comment in the dataset is annotated with
one of the following labels, reflecting how well it an-
swers the question: Good, Potential, Bad, Dialogue,
Not English, and Other. At SemEval-2015 Task 3,
the latter four classes were merged into BAD at test-
ing time, and the evaluation measure uses a macro-
averaged F1 over the three classes: Good, Poten-
tial, and BAD. Unfortunately, the Potential class was
both the smallest (covering about 10% of the data),
and also the noisiest and the hardest to predict; yet,
its impact was magnified by the macro-averaged F1.
Thus, subsequent work has further merged Potential
under BAD (Barrón-Cedeño et al., 2015; Joty et al.,
2015), and has used for evaluation F1 with respect to
the Good category (or just accuracy). For our exper-
iments below, we also report F1 for the Good class
and the overall accuracy. We further perform sta-
tistical significance tests using an approximate ran-
domization test based on accuracy.6 We used SIGF
V.2 (Padó, 2006) with 10,000 iterations.

5
http://www.qatarliving.com/forum

6Significance tests operate on individual instances rather
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Figure 1: A factor graph where the factors are defined on each variable pair.

• A message from a factor node a to a variable node v (µ
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) is the product
of the factor with messages from all other nodes, marginalized over all
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For a pairwise graph, we can further combine Equations 3 and 5, and write
the following using only the random variables:
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The net e↵ect of the two types of messages is that a variable node gets
influenced by its neighboring variable nodes in the original graph, where each
influence is factor marginalized over other variables. In a typical run, each
message will be updated iteratively from the previous value of the neighboring
messages. Di↵erent scheduling can be used for updating the messages. In the
case where the graphical model is a tree, an optimal scheduling allows to reach
convergence after computing each message only once. When the factor graph
has cycles or loops, such an optimal scheduling does not exist, and a typical
choice is to update all messages simultaneously at each iteration.
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where N(a) is the set of neighboring (variable) nodes to a. If N(a)\{v} is
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•  Belief	  propaga:on	  (Pearl,	  1988)	  is	  a	  message	  passing	  algorithm	  
for	  performing	  inference	  in	  probabilis:c	  graphical	  models.	  	  	  	  
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Upon convergence, the estimated marginal distribution of each node is pro-
portional to the product of all messages from adjoining factors:
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Likewise, the estimated joint marginal distribution of the set of variables
belonging to one factor is proportional to the product of the factor and the
messages from the variables:
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In the case where the factor graph is acyclic (i.e. tree, forest), these estimated
marginal actually converge to the true marginals in a finite number of iterations.
Since in our work we are interested in general graphs with loops, in the following
we describe an approximation algorithm for such graphs, i.e., the loopy BP.

2.1 Approximate Algorithm for General Graphs

Although it was originally designed for acyclic graphical models, it was found
that the BP can be used in general graphs. The algorithm is then called “loopy”
BP. Although the algorithm remains the same, initialization and update schedul-
ing must be adjusted slightly compared with the one used for trees.

In Loopy BP, one initializes all variable messages to 1 and updates all
messages simultaneously (typically) at every iteration. One method of exact
marginalization in general graphs is called the junction tree algorithm, which
is simply belief propagation on a modified graph guaranteed to be a tree. The
basic premise is to eliminate cycles by clustering them into single nodes.

2.1.1 Loopy Belief Propagation for Pairwise Factor Graphs

Let us formulate the loopy BP for the factor graph G = (V,E) in Figure 1. The
joint probability can be written in terms of node and edge potentials:

P (x) ⇡
Y

v2V

f

v

(x
v

)
Y

(u,v)2E

f
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See Kevin’s book Chap 22 for a pseudocode of the algorithm.

3 Results

Model Learn. Alg Permutation Dev Acc Test Acc
MaxEnt LBFGS - - 78.43
MaxEnt SGD Yes 76.47 79.15*
MaxEnt SGD No 75.54 78.67

Table 1: Local Good-vs-Bad classification.
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Belief Propagation for Pairwise Factors 

3.1 Joint Learning of Two Classifiers with
Global Thread-Level Inference

Our aim is to train the local classifiers so that they
produce correct global classification. To this end, in
our first model we train the node- and the edge-level
classifiers jointly based on global feedback provided
by a global inference algorithm. The global feed-
back determines how much to adjust the local classi-
fiers so that the classifiers and the inference together
produce the desired result. We use log-linear models
(aka maximum entropy) for both classifiers:

 n(yi = k|xi,v) =

exp(v

T
k xi)PK

k0=1 exp(v
T
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(1)

 e(yi,j = l|�(xi,xj),w)=

exp(w

T
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where yki and yli,j are the gold labels for i-th node
and (i, j)-th edge expressed in 1-of-K (or 1-of-L)
encoding, respectively, and Z(·) terms are the local
normalization constants.

We give a pseudocode in Algorithm 1 that trains
this model in an online fashion using feedback from
the loopy belief propagation (LBP) inference algo-
rithm (to be described later in Section 3.1.1). Specif-
ically, the marginals from the LBP are used in a
stochastic gradient descent (SGD) algorithm, which
has the following (minibatch) update rule:
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where ✓t and ⌘t are the model parameters and the
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Algorithm 1: Joint learning of local classifiers
with global thread-level inference

1. Initialize the model parameters v and w;
2. repeat
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In the above equations, � and y are the marginals
and the gold labels, respectively.

Note that when applying the model to the test
threads, we need to perform the same global infer-
ence to get the best label assignments.

3.1.1 Inference Using Belief Propagation
Belief Propagation or BP (Pearl, 1988) is a mes-

sage passing algorithm for inference in probabilis-
tic graphical models. It supports (i) sum-product,
to compute the marginal distribution for each un-
observed variable, i.e., p(yi|x, ✓); and (ii) max-
product, to compute the most likely label configu-
ration, i.e., argmaxy p(y|x, ✓). We describe here
the variant that operates on undirected graphs (aka
Markov random fields) with pairwise factors, which
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Note that when applying the model to the test
threads, we need to perform the same global infer-
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3.1.1 Inference Using Belief Propagation
Belief Propagation or BP (Pearl, 1988) is a mes-

sage passing algorithm for inference in probabilis-
tic graphical models. It supports (i) sum-product,
to compute the marginal distribution for each un-
observed variable, i.e., p(yi|x, ✓); and (ii) max-
product, to compute the most likely label configu-
ration, i.e., argmaxy p(y|x, ✓). We describe here
the variant that operates on undirected graphs (aka
Markov random fields) with pairwise factors, which
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Message:	  

Node	  Belief:	  

Edge	  Belief:	  

•  BP	  is	  guaranteed	  to	  converge	  to	  an	  exact	  solu:on	  if	  the	  graph	  
is	  a	  tree.	  

•  Exact	  inference	  is	  intractable	  for	  general	  graphs	  (with	  loops).	  
•  Although	  LBP	  gives	  approximate	  solu:ons	  for	  general	  graphs,	  
it	  oken	  works	  well	  in	  prac:ce	  (Murphy	  et	  al,	  1999)	  



Outline 
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•  Mo:va:on	  
•  Three	  approaches	  to	  classifica:on	  
•  Our	  models	  

o  Locally	  normalized	  Joint	  model	  
o  Globally	  normalized	  Fully-‐connected	  CRF	  

•  Inference	  with	  loopy	  Belief	  Propaga:on	  
•  Experiments	  &	  error	  analysis	  
•  Conclusion	  &	  future	  work	  



 Experimental Settings:  
Datasets and Metrics 

 
•  Dataset:	   SemEval	  2015	  Task	  3:	  	  

	  Ques:on-‐answer	  threads	  from	  Qatar	  Living	  

Train	   Dev	   Test	  

Ques8ons	   2600	   300	   329	  

Comments	   16,541	   1645	   1976	  

•  Metrics:	  

o  Macro	  F1	  
o  Accuracy	  

•  Significance	  test:	  
o  Appr.	  Randomiza:on	  
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Experimental Settings: Features 
 

Local features Global features 

•  Longest common subsequence 
•  Cosine similarity 
•  Jaccard coefficient 
•  PTK over syntactic trees. 
•  ….. 

Similarity features 

•  URL, email address 
•  “yes”, “no”, etc. 
•  Thank*, ack* 
•  Length 
•  ….. 

Heuristic features 

•  Position of the comment. 
•  # of comments by the same user. 
•  Comment appears before a comment 

by uq containing ack, question. 
•  Contains a dialogue pattern. 
•  …… 

•  Node-level 

•  Edge-level 
•  All features from Node classifier 
•  Similarity features 
•  Good vs. bad predictions 
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BarrÓn-‐Cedeño	  et	  al.	  (2015);	  Joty	  et	  al	  (2015)	  



Experimental Settings:  
Methods Compared 

 

•  Independent	  comment	  classifica:on	  (ICC)	  

o  MaxEnt	  (SGD)	   o  Perceptron	  

•  Learning	  &	  Inference	  (LI)	  

o  MaxEnt	  (SGD)	   o  Graph	  cut	  
o  Loopy	  BP	  

•  Joint	  Learning	  &	  Inference	  

o  Joint	  MaxEnts	  (SGD)	   o  Graph	  cut	  
o  Loopy	  BP	  o  FCCRF	  (SGD)	  
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Inf.	  alg.	  

Inf.	  alg.	  



 Main Results 

Model Learning Inference P R F1 Acc
I. Majority – – 50.5 100.0 67.1 50.5
II. ICCME Local, SGD – 75.1 85.8 80.1 78.5

ICCPerc Local, Voted – 76.6 82.4 79.4 78.4
III. LIME�GC Local, SGD Graph-cut 77.4 83.6 80.4 79.4

LIME�LBP Local, SGD LBP 76.4 84.6 80.3 79.1
IV. JointME�LBP 2 classifiers, Joint, SGD LBP 76.1 84.4 80.0 78.7

JointPerc�LBP 2 classifiers, Joint, AVG LBP 77.1 74.5 75.8 76.0
FCCRF Joint, SGD LBP 77.3 86.2 81.5 80.5

Table 1: Results of all compared models on the test set. The best results are boldfaced.

Model P R F1 Acc
MaxEnt classifier 75.7 84.3 79.8 78.4
Linear CRF 74.9 83.5 78.9 77.5
MaxEnt+ILP 77.0 83.5 80.2 79.1
MaxEnt+GraphCut 78.3 82.9 80.6 79.8
Our method (FCCRF) 77.3 86.2 81.5 80.5

Table 2: Comparison to the best published results on
the same datasets, as reported in (Joty et al., 2015).

Comparing our LIME�GC to MaxEnt+GraphCut
in Table 2, we see that we are slightly worse: -0.2 in
F1-score, and -0.4 in accuracy. It turns out that this
is due to our on-line MaxEnt classifier for the pair-
wise classification being slightly worse (-0.4 accu-
racy points absolute), which could explain the lower
performance after the graph-cut inference.

Next, block IV shows that the fully connected
CRF model (FCCRF) improves over the models in
block III by more than one point absolute in both F1

and accuracy. The improvement is statistically sig-
nificant (p-value = 0.04); especially noticeable is the
increase in recall (+2.6 points). This result is also
an improvement over the state of the art, as Table 2
shows.

Again in block IV, we can see that the two mod-
els that perform joint training of two classifiers
and then integrate inference in the training loop,
JointME�LBP and JointPerc�LBP , do not work well
and fall below the learning and inference models
from block III. As we explained above, these models
have two major disadvantages compared to FCCRF:
(i) the local normalization of node and edge scores
is prone to label bias issues; (ii) each of the two clas-
sifiers uses its own feature set, which might not be
optimal when they are trained jointly based on the
global feedback.

Notice that the version using Perceptron,
JointPerc�LBP , works bad in this setting. Since
updates are done after each thread-level inference,
we could not use a voted perceptron, but an aver-
aged one (Collins, 2002). Moreover, it did not yield
probabilities but real-valued scores, which we had
to remap to the [0;1] interval using a sigmoid.

5.1 CRF Variants Analysis
Table 3 compares different variants of CRF. The first
two rows show the results for the commonly used
linear-chain CRF (LCCRF) of order 1 and 2. We
can see that these models fall two accuracy (and F1)
points below FCCRF, which indicates that the pair-
wise relations between non-consecutive comments
provide additional relevant information for the task.
The fourth row shows the results when we eliminate
the edge-level features and we consider state tran-
sitions using the bias features only: the decrease in
performance is tiny, which means that what matters
is to model the interaction in the first place; the par-
ticular features used are less important. More no-
ticeable is the effect of using Ising-like modeling of
the edge factors in our FCCRF model. If we use
finer-grained edge factors for each of the four com-
binations (Good-Good, Good-Bad, Bad-Good, and
Bad-Bad), the performance decreases significantly,
mostly due to a drop in recall (see ‘FCCRF (4C)’).

5.2 Error Analysis
Next, we get a closer look at the predictions made
by our best Local (ICCME), Inference (LIME�GC),
and Global (FCCRF) models. We focus on questions
for which there are at least two comments. There
were 280 such test questions (out of 329), with a
total of 1,927 comments.

MaxEnt	  performs	  slightly	  beqer	  than	  voted	  perceptron	  
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•  Independent	  comment	  classifica:on	  (ICC)	  

o  MaxEnt	  (SGD)	   o  Perceptron	  
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Table 2: Comparison to the best published results on
the same datasets, as reported in (Joty et al., 2015).

Comparing our LIME�GC to MaxEnt+GraphCut
in Table 2, we see that we are slightly worse: -0.2 in
F1-score, and -0.4 in accuracy. It turns out that this
is due to our on-line MaxEnt classifier for the pair-
wise classification being slightly worse (-0.4 accu-
racy points absolute), which could explain the lower
performance after the graph-cut inference.

Next, block IV shows that the fully connected
CRF model (FCCRF) improves over the models in
block III by more than one point absolute in both F1

and accuracy. The improvement is statistically sig-
nificant (p-value = 0.04); especially noticeable is the
increase in recall (+2.6 points). This result is also
an improvement over the state of the art, as Table 2
shows.

Again in block IV, we can see that the two mod-
els that perform joint training of two classifiers
and then integrate inference in the training loop,
JointME�LBP and JointPerc�LBP , do not work well
and fall below the learning and inference models
from block III. As we explained above, these models
have two major disadvantages compared to FCCRF:
(i) the local normalization of node and edge scores
is prone to label bias issues; (ii) each of the two clas-
sifiers uses its own feature set, which might not be
optimal when they are trained jointly based on the
global feedback.

Notice that the version using Perceptron,
JointPerc�LBP , works bad in this setting. Since
updates are done after each thread-level inference,
we could not use a voted perceptron, but an aver-
aged one (Collins, 2002). Moreover, it did not yield
probabilities but real-valued scores, which we had
to remap to the [0;1] interval using a sigmoid.

5.1 CRF Variants Analysis
Table 3 compares different variants of CRF. The first
two rows show the results for the commonly used
linear-chain CRF (LCCRF) of order 1 and 2. We
can see that these models fall two accuracy (and F1)
points below FCCRF, which indicates that the pair-
wise relations between non-consecutive comments
provide additional relevant information for the task.
The fourth row shows the results when we eliminate
the edge-level features and we consider state tran-
sitions using the bias features only: the decrease in
performance is tiny, which means that what matters
is to model the interaction in the first place; the par-
ticular features used are less important. More no-
ticeable is the effect of using Ising-like modeling of
the edge factors in our FCCRF model. If we use
finer-grained edge factors for each of the four com-
binations (Good-Good, Good-Bad, Bad-Good, and
Bad-Bad), the performance decreases significantly,
mostly due to a drop in recall (see ‘FCCRF (4C)’).

5.2 Error Analysis
Next, we get a closer look at the predictions made
by our best Local (ICCME), Inference (LIME�GC),
and Global (FCCRF) models. We focus on questions
for which there are at least two comments. There
were 280 such test questions (out of 329), with a
total of 1,927 comments.

Global	  inference	  improves	  over	  local	  classifiers,	  but	  not	  
significantly	  (p	  =	  0.09)	  	  
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•  Learning	  &	  Inference	  (LI)	  
o  MaxEnt	  (SGD)	   o  Graph	  cut	  (Joty	  et	  al,	  2015)	  

o  Loopy	  BP	  
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points below FCCRF, which indicates that the pair-
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by our best Local (ICCME), Inference (LIME�GC),
and Global (FCCRF) models. We focus on questions
for which there are at least two comments. There
were 280 such test questions (out of 329), with a
total of 1,927 comments.

Joint	  learning	  with	  local	  normaliza:on	  does	  not	  work	  well	  
	  
Joint	  learning	  with	  global	  normaliza:on	  is	  the	  best	  model	  
and	  significantly	  beqer	  than	  local	  models	  (p	  =	  0.04)	  	  
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JointME�LBP and JointPerc�LBP , do not work well
and fall below the learning and inference models
from block III. As we explained above, these models
have two major disadvantages compared to FCCRF:
(i) the local normalization of node and edge scores
is prone to label bias issues; (ii) each of the two clas-
sifiers uses its own feature set, which might not be
optimal when they are trained jointly based on the
global feedback.

Notice that the version using Perceptron,
JointPerc�LBP , works bad in this setting. Since
updates are done after each thread-level inference,
we could not use a voted perceptron, but an aver-
aged one (Collins, 2002). Moreover, it did not yield
probabilities but real-valued scores, which we had
to remap to the [0;1] interval using a sigmoid.

5.1 CRF Variants Analysis
Table 3 compares different variants of CRF. The first
two rows show the results for the commonly used
linear-chain CRF (LCCRF) of order 1 and 2. We
can see that these models fall two accuracy (and F1)
points below FCCRF, which indicates that the pair-
wise relations between non-consecutive comments
provide additional relevant information for the task.
The fourth row shows the results when we eliminate
the edge-level features and we consider state tran-
sitions using the bias features only: the decrease in
performance is tiny, which means that what matters
is to model the interaction in the first place; the par-
ticular features used are less important. More no-
ticeable is the effect of using Ising-like modeling of
the edge factors in our FCCRF model. If we use
finer-grained edge factors for each of the four com-
binations (Good-Good, Good-Bad, Bad-Good, and
Bad-Bad), the performance decreases significantly,
mostly due to a drop in recall (see ‘FCCRF (4C)’).

5.2 Error Analysis
Next, we get a closer look at the predictions made
by our best Local (ICCME), Inference (LIME�GC),
and Global (FCCRF) models. We focus on questions
for which there are at least two comments. There
were 280 such test questions (out of 329), with a
total of 1,927 comments.
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 Comparison between CRF Variants 

Model P R F1 Acc
LCCRF (ord=1) 76.1 83.2 79.4 78.3
LCCRF (ord=2) 76.8 82.1 79.3 78.4
FCCRF 77.3 86.2 81.5 80.5
FCCRF-noFeatures 77.2 86.0 81.4 80.1
FCCRF (4C) 78.8 79.7 79.3 79.0

Table 3: Results for different variants of the joint
CRF model on the test set.

The Local, the Inference, and the Joint mod-
els made correct predictions for 78.7%, 79.1% and
80.4% of the comments, respectively. We can see
that the Inference model behaves more like Local,
and not so much like Joint. This is indeed further
confirmed when we look at the agreement between
each pair of models: Local vs. Inference has 6.0%
disagreement, for Local vs. Joint it is 9.9%, and for
Inference vs. Joint it is 8.8%.

Figure 3 compares the three models vs. the
gold human labels on a particular test question
(ID=Q2908; some long comments are truncated and
the four omitted answers were classified correctly by
all three classifiers). We can see that the Joint model
is more robust than the Local one: while Joint cor-
rects two of the three wrong classifications of Local,
Inference makes two further errors instead.

6 Conclusion

We have proposed two learning methods for com-
ment classification in community Question Answer-
ing. We depart from the state-of-the-art knowl-
edge that exploiting the interrelations between all
the comments in the answer-thread is beneficial for
the task. Thus, we take as our baseline the learn-
ing and inference model from Joty et al. (2015), in
which the answer-thread is modeled as a fully con-
nected graph. Our contribution consists of moving
the framework to on-line learning and proposing two
models for coupling learning with inference.

Our first model learns jointly the two MaxEnt
classifiers with SGD and incorporates the graph in-
ference at every step with loopy belief propagation.
This model, due to its local normalization, suffers
from the label bias problem. The alternative we pro-
posed is to use an instance of a Fully Connected CRF
that operates on the same graph and considers the
node and edge factors with a shared set of features.

Q: I have a female friend who is leaving for a teaching
job in Qatar in January. What would be a useful
portable gift to give her to take with her?

A1 A couple of good best-selling novels. [. . .]
Loc: Good, Inf: Good, Jnt: Good, Hum: Good

A5 A big box of decent tea.... like “Scottish blend” or
“Tetleys”.. [. . .]
Loc: Good, Inf: Good, Jnt: Good, Hum: Good

A6 Bacon. Nice bread, bacon, bacon, errmmm bacon
and a pork joint..
Loc: Good, Inf: Bad, Jnt: Good, Hum: Good

A8 Go to Tesco buy some good latest DVD.. [. . .]
Loc: Good, Inf: Good, Jnt: Good, Hum: Good

A9 Couple of good novels, All time favorite movies, ..
Loc: Good, Inf: Bad, Jnt: Good, Hum: Good

A10 Agree I do the same Indorachel..But some time you
get a good copy some time a bad one.. [. . .]
Loc: Good, Inf: Good, Jnt: Good, Hum: Bad

A11 Ditto on the books and dvd’s. Excedrin.
Loc: Bad, Inf: Bad, Jnt: Good, Hum: Good

A12 Ditto on the bacon, pork sausage, pork chops,
ham,..can you tell we miss pork! [. . .]
Loc: Bad, Inf: Bad, Jnt: Good, Hum: Good

Figure 3: Sample test question with a thread of com-
ments and, for each comment, decisions by the local
(Loc), the global inference (Inf), and the global joint
(Jnt) classifiers, as well as by the human annotators.

One of the main advantages is that the normalization
is global. We experimented with the SemEval-2015
Task 3 dataset and we confirmed the advantage of
the FCCRF model, which outperforms all baselines
and achieves better results than the state of the art.

In the near future, we plan to apply the FCCRF
model to the full cQA task, i.e., finding good an-
swers to newly-asked questions using previously-
asked questions and their answer threads. In this
setting, we want to experiment with (i) ranking com-
ments (instead of classifying them), (ii) exploiting
the similarities between the new question and the
questions in the database and also the relations be-
tween comments across different answer-threads.
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ments and, for each comment, decisions by the local
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One of the main advantages is that the normalization
is global. We experimented with the SemEval-2015
Task 3 dataset and we confirmed the advantage of
the FCCRF model, which outperforms all baselines
and achieves better results than the state of the art.

In the near future, we plan to apply the FCCRF
model to the full cQA task, i.e., finding good an-
swers to newly-asked questions using previously-
asked questions and their answer threads. In this
setting, we want to experiment with (i) ranking com-
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 Error Analysis 
Model P R F1 Acc
LCCRF (ord=1) 76.1 83.2 79.4 78.3
LCCRF (ord=2) 76.8 82.1 79.3 78.4
FCCRF 77.3 86.2 81.5 80.5
FCCRF-noFeatures 77.2 86.0 81.4 80.1
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•  Accuracy	  for	  threads	  with	  
more	  than	  one	  comment	  

o  Local:	  78.7	  
o  Inference:	  79.1	  
o  Joint:	  80.4	  

•  Disagreements	  

o  Local	  vs.	  Inference:	  6%	  
o  Local	  vs.	  Joint:	  9.9%	  
o  Inference	  vs.	  Joint:	  8.8%	  
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Conclusion 

•  Proposed	  two	  models	  for	  coupling	  learning	  with	  inference	  
•  The	  locally	  normalized	  model	  suffers	  from	  label	  bias	  
•  The	  FCCRF	  model	  with	  Ising-‐like	  edge	  poten:als	  performs	  

the	  best	  and	  achieves	  state-‐of-‐the-‐art	  results.	  

•  In	  future,	  we	  would	  like	  to	  apply	  FCCRF	  to	  other	  cQA	  tasks:	  
	  -‐	  finding	  related	  ques:ons	  to	  a	  new	  ques:on	  
	  -‐	  finding	  good	  answers	  to	  a	  new	  ques:on.	  	  
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