Joint Learning with Global Inference for Comment Classification in Community Question Answering

Shafiq Joty, Lluís Màrquez and Preslav Nakov Arabic Language Technology (ALT) Group Qatar Computing Research Institute - HBKU

معهد قطر لبحوث الحوسية. Qatar Computing Research Institute.

جامعة حصد بان خليفة HAMAD BIN KHALIFA UNIVERSITY

What this Talk is About?

- Not about feature engineering
- Not about deep learning
- But, about joint learning and inference
- Also about locally vs. globally normalized models.

The Task: Community Question Answering

Q

hello guys and gals..could anyone of u knows where to buy a good and originals RC helicopters and toy guns here in qatar..im longin for this toys but its nowhere to find.. thanks

Did you check with Toys R us? I think I saw it there.

Go to Doha city center you may get it at 4 floor.

"Hobby Shop" in City center has these toys with original motors. They are super cool.. U will love that shop..and will definetly buy one :) Have fun :)

A₄

 A_5

 A_6

 A_1

Α,

 A_3

Hobby Shop- City Centre

OMG!!:| Guns and helicopters??!!

Speed Marine- Salwa Road I think these guys r the best ..

Need for Joint Learning and Inference

- Many comments are short.
- Many comments contain similar info.
- Similar comments should get similar labels.
- Similarity with question not enough.
- Classifier does not get enough information when comments are considered separately.
- Need Joint learning & inference to learn to classify collectively.

- Q: hello guys and gals..could anyone of u knows where to buy a good and originals RC helicopters and toy guns here in qatar.im longin for this toys but its nowhere to find.. thanks
- A₁ Go to Doha city center you may get it at 4 floor.Local: Good, Human: Good
- A2 "Hobby Shop" in City center has these toys with original motors. They are super cool.. U will love that shop..and will definetly buy one :) Have fun :)
 Local: Good, Human: Good
- A₃ IM selling all my rc nitro helicopters. call me at 5285113.. (1)TREX 600 new/ (1) TREX500 (1) SHUTTLERG (1) FUTABA ... [truncated] Local: Good, Human: Bad
- A₄ Hobby Shop- City Centre Local: Bad, Human: Good
- A₅ OMG!! :— Guns and helicopters??!! Local: Good, Human: Bad
- A₆ Speed Marine- Salwa Road I think these guys r the best in town...
 Local: Good, Human: Good
- A₇ City center, i've seen wonderful collection.. Its some wer besides the kids fun place..
 Local: Bad, Human: Good
- A₈ try the shop in city center. they have many RC toys for sale there. and for the toy guns, in your talking baout airsoft i think its prohibited here. good luck Local: Good, Human: Good

Outline

- Motivation
- Three approaches to classification
- Our models
 - Locally normalized Joint model
 - Globally normalized Fully-connected CRF
- Inference with loopy Belief Propagation
- Experiments & error analysis
- Conclusion & future work

Three Approaches to Classification

Approach 1: Classify each comment separately

x: feature vector extracted by
considering the comment and
 the question

y: class label

Does not model the dependency between comment labels

Three Approaches to Classification

Approach 2:

- Learn two classifiers separately and combine them in Inference
- Works in three steps (Joty et al. 2015, Pang & Lee, 2004):

Approach 2: Inference with Graph Cut

- Decoupling learning from inference can lead to suboptimal solutions (Punyakanok et al., 2005)
- Often requires a tuning parameter to control the relative weights of the two classifiers in the combination.

Three Approaches to Classification

Approach 3: Learn to classify with global inference (our approach)

- Learn node-level & edge-level classifiers/potentials from global thread-level feedback given by an inference alg.
- **Classify** collectively with global inference.

Models dependencies between output variables while learning.

Potentials could be normalized **locally** or **globally**

Our Models

Model 1: Learn two local classifiers jointly with global feedback

• Node-level classifier: $\psi_n(y_i = k | \mathbf{x_i}, \mathbf{v}) = \frac{\exp(\mathbf{v}_k^T \mathbf{x_i})}{\sum_{k'=1}^K \exp(\mathbf{v}_k^T \mathbf{x_i})}$

• Edge-level classifier: $\psi_e(y_{i,j} = l | \phi(\mathbf{x_i}, \mathbf{x_j}), \mathbf{w}) = \frac{\exp(\mathbf{w}_l^T \phi(\mathbf{x_i}, \mathbf{x_j}))}{\sum_{l'=1}^L \exp(\mathbf{w}_{l'}^T \phi(\mathbf{x_i}, \mathbf{x_j}))}$

Our Models

Model 1: Learning two local classifiers jointly with global inference

- Node-level classifier: $\psi_n(y_i = k | \mathbf{x}_i, \mathbf{v}) = \frac{\exp(\mathbf{v}_k^T \mathbf{x}_i)}{\sum_{k'=1}^K \exp(\mathbf{v}_k^T \mathbf{x}_i)}$
- Edge-level classifier: $\psi_e(y_{i,j} = l | \phi(\mathbf{x_i}, \mathbf{x_j}), \mathbf{w}) = \frac{\exp(\mathbf{w}_l^T \phi(\mathbf{x_i}, \mathbf{x_j}))}{\sum_{l'=1}^L \exp(\mathbf{w}_{l'}^T \phi(\mathbf{x_i}, \mathbf{x_j}))}$

Algorithm 1: Joint learning of local classifiers with global thread-level inference

1. Initialize the model parameters \mathbf{v} and \mathbf{w} ;

2. repeat

```
for each thread G = (V, E) do

a. Compute node and edge probabilities

\psi_n(y_i | \mathbf{x}_i, \mathbf{v}) and \psi_e(y_{i,j} | \phi(\mathbf{x}_i, \mathbf{x}_j), \mathbf{w});

b. Infer node and edge marginals \beta_n(y_i)

and \beta_e(y_{i,j}) using sum-product LBP;

c. Update: \mathbf{v} = \mathbf{v} - \frac{\eta}{|V|} f'(\mathbf{v});

d. Update: \mathbf{w} = \mathbf{w} - \frac{\eta}{|E|} f'(\mathbf{w});

end

until convergence;
```

Limitations of Model 1

- Local normalization leads to **label bias** problem.
- Local classifiers use their own feature sets, which may not work well when trained with global feedback.

Our Models

Model 2: Learn a joint model with global normalization

- The model: $p(\mathbf{y}|\mathbf{v},\mathbf{w},\mathbf{x}) = \frac{1}{Z(\mathbf{v},\mathbf{w},\mathbf{x})} \prod_{i \in V} \psi_n(y_i|\mathbf{x},\mathbf{v}) \cdot \prod_{(i,j)\in E} \psi_e(y_{i,j}|\mathbf{x},\mathbf{w})$
- Node potential: $\psi_n(y_i|\mathbf{x}, \mathbf{v}) = \exp(\mathbf{v}^T \phi(y_i, \mathbf{x}))$
- Edge potential: $\psi_e(y_{i,j}|\mathbf{x}, \mathbf{w}) = \exp(\mathbf{w}^T \phi(y_{i,j}, \mathbf{x}))$ ullet
- Objective: $f(\theta) = \sum_{i \in V} \mathbf{v}^T \phi(y_i, \mathbf{x}) + \sum_{(i,j) \in E} \mathbf{w}^T \phi(y_{i,j}, \mathbf{x}) - \log Z(\mathbf{v}, \mathbf{w}, \mathbf{x})$ Pairwise FCCRF Yi $\psi_e(y_{i,j}|\phi(\mathbf{x}_i,\mathbf{x}_j),\mathbf{w})$ **Edge potentials:** Yi a. All possible state transitions **y**_k $\psi_n(y_i|\mathbf{x}_i,\mathbf{v})$ b. Ising like (Same and Different) Xi 13 NAACL-2016 Xk

Inference with Belief Propagation

• Belief propagation (Pearl, 1988) is a message passing algorithm for performing inference in probabilistic graphical models.

• Message from a variable node to a factor node

$$\mu_{v \to a}(x_v) = \prod_{a^* \in N(v) \setminus \{a\}} \mu_{a^* \to v}(x_v); \forall x_v \in Dom(v)$$

Inference with Belief Propagation

• Message from a factor node to a variable node

$$\mu_{a \to v}(x_v) = \sum_{\mathbf{x}'_a: x'_v = x_v} f_a(\mathbf{x}'_a) \prod_{v^* \in N(a) \setminus \{v\}} \mu_{v^* \to a}(x_{v^*}); \forall x_v \in Dom(v)$$

• Upon convergence: $P(x_v) \propto \prod_{a \in N(v)} \mu_{a \to v}(x_v)$ $P(\mathbf{x}_a) \propto f_a(\mathbf{x}_a) \prod_{v \in N(a)} \mu_{v \to a}(x_v)$

Belief Propagation for Pairwise Factors

Message:
$$\mu_{i \to j}(y_j) = \sum_{y_i} \psi_n(y_i) \psi_e(y_{i,j}) \prod_{k \in N(i) \setminus j} \mu_{k \to i}(y_i)$$

Node Belief: $\beta_n(y_i) \approx \psi_n(y_i) \prod_{j \in N(i)} \mu_{j \to i}(y_i)$

Edge Belief: $\beta_e(y_{i,j}) \approx \psi_e(y_{i,j}) \times \mu_{i \to j}(y_i) \times \mu_{j \to i}(y_j)$

- BP is guaranteed to converge to an exact solution if the graph is a tree.
- Exact inference is intractable for general graphs (with loops).
- Although LBP gives approximate solutions for general graphs, it often works well in practice (Murphy et al, 1999)

Outline

- Motivation
- Three approaches to classification
- Our models
 - $\circ~$ Locally normalized Joint model
 - Globally normalized Fully-connected CRF
- Inference with loopy Belief Propagation
- Experiments & error analysis
- Conclusion & future work

Experimental Settings: Datasets and Metrics

• Dataset: SemEval 2015 Task 3:

Question-answer threads from Qatar Living

	Train	Dev	Test
Questions	2600	300	329
Comments	16,541	1645	1976

- Metrics:
 - o Macro F1
 - Accuracy

- Significance test:
 - Appr. Randomization

Experimental Settings: Features

Barrón-Cedeño et al. (2015); Joty et al (2015)

• Node-level

Local features

Similarity features

- Longest common subsequence
- Cosine similarity
- Jaccard coefficient
- PTK over syntactic trees.
-

Heuristic features

- URL, email address
- "yes", "no", etc.
- Thank*, ack*
- Length

17-07-29

Global features

- Position of the comment.
- # of comments by the same user.
- Comment appears before a comment by u_q containing ack, question.
- Contains a dialogue pattern.

Edge-level

.

- All features from Node classifier
- Similarity features
- Good vs. bad predictions

Experimental Settings: Methods Compared

- Independent comment classification (ICC)
 - MaxEnt (SGD)
 Perceptron
- Learning & Inference (LI)
 - Graph cut
 Loopy BP • MaxEnt (SGD) Inf. alg.
- Joint Learning & Inference
 - Joint MaxEnts (SGD)
 FCCRF (SGD)
 FCCRF (SGD)
 Loopy BP
- Inf. alg.

Main Results

	Model	Learning	Inference	Р	R	F_1	Acc
I.	Majority	_	_	50.5	100.0	67.1	50.5
II.	ICC_{ME}	Local, SGD	-	75.1	85.8	80.1	78.5
	ICC_{Perc}	Local, Voted	-	76.6	82.4	79.4	78.4
III.	LI_{ME-GC}	Local, SGD	Graph-cut	77.4	83.6	80.4	79.4
	LI_{ME-LBP}	Local, SGD	LBP	76.4	84.6	80.3	79.1
IV.	Joint _{ME-LBP}	2 classifiers, Joint, SGD	LBP	76.1	84.4	80.0	78.7
	Joint _{Perc-LBP}	2 classifiers, Joint, AVG	LBP	77.1	74.5	75.8	76.0
	FCCRF	Joint, SGD	LBP	77.3	86.2	81.5	80.5

• Independent comment classification (ICC)

• MaxEnt (SGD) • Perceptron

MaxEnt performs slightly better than voted perceptron

Main Results

	Model	Learning	Inference	Р	R	F_1	Acc
I.	Majority	_	_	50.5	100.0	67.1	50.5
II.	ICC_{ME}	Local, SGD	_	75.1	85.8	80.1	78.5
	ICC_{Perc}	Local, Voted	_	76.6	82.4	79.4	78.4
III.	LI_{ME-GC}	Local, SGD	Graph-cut	77.4	83.6	80.4	79.4
	LI_{ME-LBP}	Local, SGD	LBP	76.4	84.6	80.3	79.1
IV.	Joint _{ME-LBP}	2 classifiers, Joint, SGD	LBP	76.1	84.4	80.0	78.7
	Joint _{Perc-LBP}	2 classifiers, Joint, AVG	LBP	77.1	74.5	75.8	76.0
_	FCCRF	Joint, SGD	LBP	77.3	86.2	81.5	80.5

- Learning & Inference (LI)
 - MaxEnt (SGD)
 Graph cut (Joty et al, 2015)
 - Loopy BP

Global inference improves over local classifiers, but not significantly (p = 0.09)

17-07-29

Main Results

	Model	Learning	Inference	Р	R	F_1	Acc
I.	Majority	_	-	50.5	100.0	67.1	50.5
II.	ICC _{ME}	Local, SGD	_	75.1	85.8	80.1	78.5
	ICC_{Perc}	Local, Voted	-	76.6	82.4	79.4	78.4
III.	LI_{ME-GC}	Local, SGD	Graph-cut	77.4	83.6	80.4	79.4
	LI_{ME-LBP}	Local, SGD	LBP	76.4	84.6	80.3	79.1
IV.	Joint _{ME-LBP}	2 classifiers, Joint, SGD	LBP	76.1	84.4	80.0	78.7
	Joint _{Perc-LBP}	2 classifiers, Joint, AVG	LBP	77.1	74.5	75.8	76.0
	FCCRF	Joint, SGD	LBP	77.3	86.2	81.5	80.5

Joint learning with **local** normalization does not work well

Joint learning with **global** normalization is the best model and significantly better than local models (p = 0.04)

Comparison with State-of-the-art

Model	Р	R	F_1	Acc
MaxEnt classifier	75.7	84.3	79.8	78.4
Linear CRF	74.9	83.5	78.9	77.5
MaxEnt+ILP	77.0	83.5	80.2	79.1
MaxEnt+GraphCut	78.3	82.9	80.6	79.8
Our method (FCCRF)	77.3	86.2	81.5	80.5

Comparison between CRF Variants

Model	Р	R	F_1	Acc
LCCRF (ord=1)	76.1	83.2	79.4	78.3
LCCRF (ord=2)	76.8	82.1	79.3	78.4
FCCRF	77.3	86.2	81.5	80.5
FCCRF-noFeatures	77.2	86.0	81.4	80.1
FCCRF (4C)	78.8	79.7	79.3	79.0

Linear chain CRFs are not the best models for this task

Comparison between CRF Variants

Model	Р	R	F_1	Acc
LCCRF (ord=1)	76.1	83.2	79.4	78.3
LCCRF (ord=2)	76.8	82.1	79.3	78.4
FCCRF	77.3	86.2	81.5	80.5
FCCRF-noFeatures	77.2	86.0	81.4	80.1
FCCRF (4C)	78.8	79.7	79.3	79.0

Edge features do not contribute much Ising-like edge potential is crucial

Error Analysis

- Accuracy for threads with more than one comment
 - Local: 78.7
 - o Inference: 79.1
 - o Joint: 80.4
- Disagreements
 - Local vs. Inference: 6%
 - Local vs. Joint: 9.9%
 - Inference vs. Joint: 8.8%

- **Q:** I have a female friend who is leaving for a teaching job in Qatar in January. What would be a useful portable gift to give her to take with her?
- A₁ A couple of good best-selling novels. [...] Loc: Good, Inf: Good, Jnt: Good, Hum: Good
- A big box of decent tea.... like "Scottish blend" or "Tetleys".. [...]
 Loc: Good, Inf: Good, Jnt: Good, Hum: Good
- A₆ Bacon. Nice bread, bacon, bacon, errmmm bacon and a pork joint..Loc: Good, Inf: Bad, Jnt: Good, Hum: Good
- A₈ Go to Tesco buy some good latest DVD.. [...] Loc: Good, Inf: Good, Jnt: Good, Hum: Good
- A₉ Couple of good novels, All time favorite movies, .. Loc: Good, Inf: Bad, Jnt: Good, Hum: Good
- Agree I do the same Indorachel..But some time you get a good copy some time a bad one.. [...]
 Loc: Good, Inf: Good, Jnt: Good, Hum: Bad
- A₁₁ Ditto on the books and dvd's. Excedrin. Loc: Bad, Inf: Bad, Jnt: Good, Hum: Good
- A₁₂ Ditto on the bacon, pork sausage, pork chops, ham,...can you tell we miss pork! [...]
 Loc: Bad, Inf: Bad, Jnt: Good, Hum: Good

Conclusion

- Proposed two models for coupling learning with inference
- The locally normalized model suffers from label bias
- The FCCRF model with Ising-like edge potentials performs the best and achieves state-of-the-art results.

Future Work

- In future, we would like to apply FCCRF to other cQA tasks:
 - finding related questions to a new question
 - finding good answers to a new question.

Joint Learning with Global Inference for Comment Classification in Community Question Answering

Shafiq Joty, Lluís Màrquez and Preslav Nakov Arabic Language Technology (ALT) Group Qatar Computing Research Institute - HBKU

معهد قطر لبحوث الحوسية. Qatar Computing Research Institute.

جامعة حصد بان خليفة HAMAD BIN KHALIFA UNIVERSITY