Discriminative Reranking of Discourse Parses Using Tree Kernels

Motivation

- Existing parsers fail to capture long range structural dependencies between constituents of a discourse tree.
- A reranker can exploit the global information as follows:
 - (1) A base parser produces k hypotheses.
 - (2) A classifier selects the best hypothesis by exploiting entire information in each hypothesis.
- Tree Kernels (TKs) allow kernel-based learning models like SVMs to learn from arbitrary tree fragments.

Our Method

- Extend the parser of Joty et. al., (2013) to k-best parsing.
- Define novel kernels for discourse trees based on new representations.
- Use SVM preference reranking framework to rank k hypotheses and select the best tree.

Experiments

Data (RST-DT)

- 385 news articles Train: 347 (7321 sent.) Test: 38 (951 sent.) Relation set: 18 coarser
- 5-fold CV was used to generate reranking data

Document-level Alg.

Model

Sentential

Intra-

EDUs

k-best

hypo

Oracle scores

Sentence-level

- Can a reranker improve at the sentence level?
- How much can the improvement push the document-level accuracy?

Shafiq Joty and Alessandro Moschitti Qatar Computing Research Institute

Results

Which TK works better on which representation?

$\phi_{TK} \circ \phi_M$	JR	N	SRN		
	Bigram	All	Bigram	All	
S τκ	81.28	80.04	82.15	80.04	
STK_b	81.35	80.28	82.18	80.25	
Ртк	81.63	78.50	81.42	78.25	

How does reranking performance vary for different values of k?

			Standar	d test set					5-folds (average)		
	k=1	k=2	k=3	k=4	k=5	k=6	k=1	k=2	k=3	k=4	k=5	k=6
RR	79.77	81.08	81.56	82.15	82.15	82.11	78.57	79.76	80.28	80.68	80.80	80.86
ERR	-	6.48	8.85	11.76	11.76	11.57	-	5.88	8.45	10.43	11.02	11.32
OR	79.77	84.42	86.55	87.68	88.09	88.75	78.57	83.20	85.13	86.49	87.35	88.03

Which features are important?

Baseline	Basic feat.	+ Rel. feat.	+ Tree
79.77	79.84	79.81	82.15

Syntactic Tree Kernel (STK) Partial Tree Kernel (PTK)

Our Findings

Reference: Shafiq Joty, Giuseppe Carenini and Raymond Ng. Combining Intra- and Multi-sentential Rhetorical Parsing for Document-level Discourse Analysis. In ACL'13.

معهد قطر لبحوث الحوسبة Qatar Computing Research Institute

Member of Qatar Foundation bö uwood jogo

Preference Reranking

 Given a pair of hypotheses <h_i, h_i>, a classifier decides whether h_i is a better tree than h_i .

 Training: +ve <h₁, h_i> -ve <h_i, h₁> h₁ has the highest f-score accuracy

• Testing: Apply the classifier to all possible pairs and take votes to rank the k candidates.

Preference Kernel

 $PK(\langle h_1, h_2 \rangle, \langle h_1', h_2' \rangle) =$ $(\phi_K(h_1) - \phi_K(h_2)) \circ (\phi_K(h_1') - \phi_K(h_2')) =$ $K(h_1, h'_1) + K(h_2, h'_2) - K(h_1, h'_2) - K(h_2, h'_1)$

Non sub-tree features

- Base parser rank & probability
- Structural properties of the DT
- Relation features

Overall document-level accuracy

	(Joty et al., 2013)	With Reranker
PAR-d	55.8	57.3

 Bigram lexicalization is better then All. • STK performs better than PTK on SRN. • Best result is obtained for k=4,5 on std. testset. • Improvement is consistent on whole corpus. • Best result is obtained for k=6 on whole corpus. • Non-subtree features doesn't help much. Subtree features learnt automatically are indeed crucial for the performance gain. • Reranking at the sentence-level significantly pushes the state-of-the-art overall accuracy.