Regularized and Retrofitted models for Learning Sentence Representation with Context

Tanay Kumar Saha1 \hspace{1em} Shafiq Joty2 \hspace{1em} Naeemul Hassan3 \\
Mohammad Al Hasan1

1Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA

2Nanyang Technological University, Singapore

3University of Mississippi, Oxford, Mississippi

November 7, 2017
Outline

1. Introduction and Motivation
2. Our Approach for Learning Sentence Representation
3. Experiments
4. Conclusion
1. Introduction and Motivation
 - Distributed Representation of Sentences
 - Motivation

2. Our Approach for Learning Sentence Representation
 - Content Model
 - Context Types
 - Regularized Models
 - Retrofitted Models

3. Experiments
 - Evaluation Tasks and Datasets
 - Classification and Clustering Performance
 - Summarization Performance

4. Conclusion
Represent sentences with **condensed real-valued vectors** that capture syntactic and semantic properties of the sentence

- *I play soccer* \(\Rightarrow [0.2, 0.3, 0.4]\)

Many sentence-level text processing tasks rely on representing sentences with fixed-length vectors

- The most common approach uses bag-of-ngrams (e.g., tf.idf)

Distributed representation has been shown to perform better
Motivation

- Most existing Sen2Vec methods disregard **context** of a sentence
- Meaning of one sentence depends on the meaning of its neighbors
 - And I was wondering about the GD LEV
 - *Is it reusable?*
 - *Or is it discarded to burn up on return to LEO?*
- Our approach: incorporate **extra-sentential context** into Sen2Vec
- We propose two methods: **regularization** and **retrofitting**
- We experiment with two types of context: **discourse** and **similarity**.
1. Introduction and Motivation
 - Distributed Representation of Sentences
 - Motivation

2. Our Approach for Learning Sentence Representation
 - Content Model
 - Context Types
 - Regularized Models
 - Retrofitted Models

3. Experiments
 - Evaluation Tasks and Datasets
 - Classification and Clustering Performance
 - Summarization Performance

4. Conclusion
Our Approach

- Consider **content** as well as **context** of a sentence
- Treat the context sentences as **atomic** linguistic units
 - Similar in spirit to (Le & Mikolov, 2014)
 - Efficient to train compared to **compositional** methods like encoder-decoder models (e.g., SDAE, Skip-Thought)
Content Model (Sen2Vec)

- Treats sentences and words similarly
- Represented by vectors in shared embedding matrix
- \(\mathbf{v} \): he works in woodworking

\[\phi : V \rightarrow \mathbb{R}^d \]

Figure: Distributed bag of words or DBOW (Le & Mikolov, 2014)
Context Types

- **Discourse Context**
 - Formed by *previous* and *following* sentences in the text
 - Adjacent sentences in a text are logically connected by certain coherence relations (e.g., elaboration, contrast)

- **Similarity Context**
 - Based on more *direct measures* of similarity (e.g., cosine)
 - Considers similarity with all other sentences

- Context can be represented by a **graph neighborhood**, \(\mathcal{N}(v) \)
Similarity Network Construction

- Represent the sentences with vectors learned from Sen2Vec, then measure the cosine similarity between the vectors.
- Restrict context size of a sentence for computational efficiency.
- Set thresholds for intra- and across-document connections.
- Allow up to 20 most similar neighbors.
Regularized Models (Reg-dis, Reg-sim)

- Incorporate neighborhood directly into the objective function of the content-based model (Sen2Vec) as a regularizer.

- Objective function:

\[
J(\phi) = \sum_{v \in V} \left[\mathcal{L}_c(v) + \beta \mathcal{L}_r(v, N(v)) \right]
\]

\[
= \sum_{v \in V} \left[\mathcal{L}_c(v) + \beta \sum_{(v, u) \in E} \| \phi(u) - \phi(v) \|^2 \right] \quad (1)
\]

- Train with SGD
- Regularization with discourse context ⇒ Reg-dis
- Regularization with similarity context ⇒ Reg-sim
u: And I was wondering about the GD LEV.

v: Is it reusable?

y: Or is it discarded to burn up on return to LEO?

(a) A sequence of sentences

(b) Sen2Vec (DBOW)

(c) REG-DIS

φ

υ

L_r

L_r
Retrofitted Model (RET-dis, RET-sim)

- Retrofit vectors learned from Sen2Vec s.t. the revised vector $\phi(v)$:
 - Similar to the prior vector, $\phi'(v)$
 - Similar to the vectors of its neighboring sentences, $\phi(u)$

- Objective function:

 $$ J(\phi) = \sum_{v \in V} \alpha_v \|\phi(v) - \phi'(v)\|^2 + \sum_{(v,u) \in E} \beta_{u,v} \|\phi(u) - \phi(v)\|^2 $$

- Solve using Jacobi iterative method
- Retrofit with discourse context \Rightarrow RET-dis
- Retrofit with similarity context \Rightarrow RET-sim
1. Introduction and Motivation
- Distributed Representation of Sentences
- Motivation

2. Our Approach for Learning Sentence Representation
- Content Model
- Context Types
- Regularized Models
- Retrofitted Models

3. Experiments
- Evaluation Tasks and Datasets
- Classification and Clustering Performance
- Summarization Performance

4. Conclusion
Extractive summarization (ranking task)

- Select the most important sentences to form a summary
- Use the popular graph-based algorithm LexRank
 - nodes \Rightarrow sentences
 - edges \Rightarrow cosine similarity between vectors (learned by models)
- Benchmark datasets from **DUC-01** and **DUC-02** for evaluation

<table>
<thead>
<tr>
<th>Dataset</th>
<th>#Doc.</th>
<th>#Avg. Sen.</th>
<th>#Avg. Sum.</th>
</tr>
</thead>
<tbody>
<tr>
<td>DUC 2001</td>
<td>486</td>
<td>40</td>
<td>2.17</td>
</tr>
<tr>
<td>DUC 2002</td>
<td>471</td>
<td>28</td>
<td>2.04</td>
</tr>
</tbody>
</table>
Evaluation Tasks and Datasets

1. **Topic classification and clustering**

 - Use learned vectors to classify or cluster sentences into topics
 - MaxEnt classifier and K-means++ clustering algorithm
 - Text categorization corpora: **Reuters-21578** & **20-Newsgroups**.

 - But, we need sentence-level annotation for evaluation
 - Naive assumption: sentences of a document share the same topic label as the document \Rightarrow induces lot of noise
 - Our approach: LexRank to select top 20% sentences of each document as representatives of the document

<table>
<thead>
<tr>
<th>Dataset</th>
<th>#Doc.</th>
<th>Total # sen.</th>
<th>Annot. # sen</th>
<th>Train # sen</th>
<th>Test # sen</th>
<th>#Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reuters</td>
<td>9,001</td>
<td>42,192</td>
<td>13,305</td>
<td>7,738</td>
<td>3,618</td>
<td>8</td>
</tr>
<tr>
<td>Newsgroups</td>
<td>7,781</td>
<td>95,809</td>
<td>22,374</td>
<td>10,594</td>
<td>9,075</td>
<td>8</td>
</tr>
</tbody>
</table>
Classification and Clustering Performance

<table>
<thead>
<tr>
<th>Topic Classification Results</th>
<th>Topic Clustering Results</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table: Performance on topic classification & clustering in comparison to Sen2Vec
<table>
<thead>
<tr>
<th>Method</th>
<th>DUC’01</th>
<th>DUC’02</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sen2Vec</td>
<td>43.88</td>
<td>54.01</td>
</tr>
<tr>
<td>Tf-Idf</td>
<td>(+) 4.83</td>
<td>(+) 1.51</td>
</tr>
<tr>
<td>W2V-avg</td>
<td>(-) 0.62</td>
<td>(+) 1.44</td>
</tr>
<tr>
<td>C-PHRASE</td>
<td>(+) 2.52</td>
<td>(+) 1.68</td>
</tr>
<tr>
<td>FastSent</td>
<td>(-) 4.15</td>
<td>(-) 7.53</td>
</tr>
<tr>
<td>Skip-Thought</td>
<td>(+) 0.88</td>
<td>(-) 2.65</td>
</tr>
<tr>
<td>RET-sim</td>
<td>(-) 0.62</td>
<td>(+) 0.42</td>
</tr>
<tr>
<td>RET-dis</td>
<td>(+) 0.45</td>
<td>(-) 0.37</td>
</tr>
<tr>
<td>REG-sim</td>
<td>(+) 2.90</td>
<td>(+) 2.02</td>
</tr>
<tr>
<td>REG-dis</td>
<td>(-) 1.92</td>
<td>(-) 8.77</td>
</tr>
</tbody>
</table>

Table: ROUGE-1 scores on DUC datasets in comparison to Sen2Vec
Outline

1. Introduction and Motivation
 - Distributed Representation of Sentences
 - Motivation

2. Our Approach for Learning Sentence Representation
 - Content Model
 - Context Types
 - Regularized Models
 - Retrofitted Models

3. Experiments
 - Evaluation Tasks and Datasets
 - Classification and Clustering Performance
 - Summarization Performance

4. Conclusion
Conclusion and Future Work

► Novel models for learning vector representation of sentences that consider not only content of a sentence but also its context
► Two ways to incorporate context: retrofitting and regularizing
► Two types of context: discourse and similarity
► Discourse context beneficial for topic classification and clustering, whereas the similarity context beneficial for summarization
► Explore further how our models perform compared to existing compositional models, where documents with sentence-level sentiment annotation exists
Thanks!

- Code and Datasets: https://github.com/tksaha/con-s2v/tree/jointlearning
- Check our CON-S2V ECML-2017 paper