JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

PIANO: Influence Maximization Meets Deep
Reinforcement Learning

Hui Li, Mengting Xu, Sourav S Bhowmick, Joty Shafiqg Rayhan, Changsheng Sun, Jiangtao Cui

Abstract—Since its introduction in 2003, the influence maxi-
mization (IM) problem has drawn significant research attention
in the literature. The aim of 1M, which is NP-hard, is to select a
set of k£ users known as seed users who can influence the most
individuals in the social network. The state-of-the-art algorithms
estimate the expected influence of nodes based on sampled
diffusion paths. As the number of required samples have been
recently proven to be lower bounded by a particular threshold
that presets tradeoff between the accuracy and efficiency, the
result quality of these traditional solutions is hard to be further
improved without sacrificing efficiency. In this paper, we present
an orthogonal and novel paradigm to address the IM problem by
leveraging deep reinforcement learning to estimate the expected
influence. Specifically, we present a novel framework called
PIANO that incorporates network embedding and reinforcement
learning techniques to address this problem. In order to make it
practical, we further present PIANO-E and PIANOQ@(d), both of
which can be applied directly to answer IM without training the
model from scratch. Experimental study on real-world networks
demonstrates that PIANO achieves the best performance w.r.t
efficiency and influence spread quality compared to state-of-the-
art classical solutions. We also demonstrate that the learned
parametric models generalize well across different networks.
Besides, we provide a pool of pretrained PIANO models such
that any IM task can be addressed by directly applying a model
from the pool without training over the targeted network.

Index Terms—influence maximization, deep reinforcement
learning, graph embedding, social network.
I. INTRODUCTION

Online social networks have become an important plat-
form for people to share and disseminate information. Given
the widespread usage of social media, individuals’ percep-
tions, preferences and behavior are often influenced by their
peers/friends in social networks. Since 2003, the influence
maximization (IM) problem has been extensively studied to
maximize diffusion of innovations and ideas in a network.
The purpose of IM is to select a set of k£ seed nodes who can
influence the most individuals in the network [1]. For instance,
an advertiser may wish to send promotional material about a
product to the k seed users of a social network that are likely
to sway the largest number of users to buy the product.

A large number of greedy and heuristic-based IM solutions
have been proposed in the literature to improve efficiency,
scalability, or influence quality. State-of-the-art IM techniques
attempt to generate (1 — 1/e — €)-approximate solutions with

H. Li, M. Xu, J. Cui are with School of Computer Science and Technology,
Xidian University, Xi’an, China.

S.S. Bhowmick and J. S. Rayhan are with School of Computer Science and
Engineering, Nanyang Technological University, Singapore.

C. Sun is with School of Computing, National University of Singapore,
Singapore

Manuscript received Nov 03, 2021; revised Mar 01, 2022; accepted Mar
31, 2022.

a smaller number of RIS (Random Interleaved Sampling)
samples, which are mainly used to estimate the expected
maximum influence (denoted as o (v, S)) for an arbitrary node
v given the current selected seeds S. They use sophisticated
estimation methods to reduce the number of RIS samples
closer to a theoretical threshold 6 [2]. As 6 provides a
lower bound for the number of required RIS samples, these
methods have to undertake a diffusion sampling phase and
generate sufficient propagation samples in order to estimate
the expected influence before selecting a seed. Despite the
improvements of the sampling model and reduction in the
number of required samples brought by recent studies, the
cost of generating these samples is large especially in huge
networks. Consequently, in this paper we ask the following
question: is it possible to avoid the diffusion sampling phase
in IM solutions by utilizing a learned parametric function to
estimate o(v,S)? We answer to this question affirmatively by
proposing a novel framework that utilizes network embedding
and reinforcement learning to tackle the IM problem.

The core challenge in IM lies in the process of estimating
o(v,S) given v and the partial solution S, which is known
to be #P-hard [1]. Traditional IM solutions address it by
sampling the diffusion paths to generate an unbiased estimate
for o(v, S). In essence, o(v,S) can be viewed as a mapping
0 : VxGx¥ — R, where G(V, E) denotes the network and ¥
refers to the set of diffusion models, which defines the criteria
to determine whether a node is influenced or not. That is,
given a network G, an arbitrary node v € V, and a particular
diffusion model (e.g., Independent Cascade, Linear Threshold
model [1]), o outputs the expected maximum number of
influenced nodes by v. In this paper, we take a radically
different approach where we view IM as a problem of finding
the optimal policy to select the k-best seeds (i.e., k-best action
sequence) in a deep reinforcement learning (RL) framework
called PIANO (deeP relnforcement leArning-based iNfluence
maximizatiOn). Crucially, PIANO approximates ¢ as a (value)
function (v, S; ©) parameterised by © and learns the values
of the parameters ©. It is worth mentioning that learning
such mapping function is non-trivial and challenging. First,
we need to transform the topology information of the target
network into features. Second, there is no target expected
maximum influence to supervise o. Hence, supervised learning
approaches cannot be adopted in this scenario. To address
these challenges, PIANO seamlessly infegrates RL [3] with
network embedding [4] in an end-to-end deep RL framework.

The network embedding method considers the network
topology to encode each node v € V into a feature vector,
which acts as input to an RL algorithm to learn the value

JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

function (v, S; ©) from rewards. The learned value function
(more specifically, state-action value function) implicitly rep-
resents the learned optimal policy that can be applied to an
unseen network for selecting k-best seeds. The learning-based
framework makes the approach generalizable (i.e., robust to
small changes in the network) and scalable to large networks
(i.e., no need to compute all individual states and store them
in memory). Moreover, we theoretically show that under our
model the k£ seeds can be selected at one time, instead of
one-after-another, which requires reevaluating o (v, S) for k
times. Our exhaustive empirical studies demonstrate that once
the mapping function is learned, it can be applied to other ho-
mogeneous networks with the same topological characteristic
(i.e., average degree).
The main contributions of the paper are as follows.

o« We present a novel framework called PIANO that ex-
ploits learning methods to solve the classical IM prob-
lem. Specifically, a novel learning method is proposed
to approximate o(v,S) as a parameterized value func-
tion &(v,S;0), by exploiting model-free RL and deep
learning for network embedding. PIANO generates seeds
with superior running time to state-of-the-art machine
learning-oblivious IM techniques without compromising
on result quality. Specifically, it is up to 36 times
faster than SSA [5]. Furthermore, our influence quality
is slightly better than the traditional methods.

e We show how PIANO can be utilized to address the IM
problem in large-scale networks even in the presence of
evolution.

o We provide a pool of pretrained PIANO models such that
any IM task can be addressed by directly applying a
model from the pool without training over the targeted
network. The facilitates generalization of the framework
to different datasets.

The rest of this paper is organized as follows. Section II
reviews related work. We formally present the learning-based
IM problem in Section III. We introduce the model training and
seeds selection procedures in Sections IV and V, respectively.
Experimental results are reported in Section VI. Finally, we
conclude this work in Section VII.

II. RELATED WORK

Influence Maximization. Since the elegant work in [1], the IM
problem has been studied extensively. Kempe et al. [1] proved
that the problem of IM is NP-hard and provided a greedy
algorithm that produces a (1 —1/e — ¢)-approximate solution.
Since then, series of works [6], [7] have been proposed to
improve the response time while preserving the approximation
guarantee. Besides these approximate algorithms, many excel-
lent heuristic algorithms [8], [9], [10], which do not provide
an approximation ratio, have been proposed to reduce running
time further. Although these heuristic algorithms reduce the
execution time by orders of magnitude, they sacrifice accuracy
of the results significantly [11].

Since the introduction of reverse influence sampling
(R1s) [12], which reversely samples a group of influence
paths, a series of advanced approximate algorithms have been

proposed, which can not only provide approximation guar-
antees, but also exhibit competitive running time compared
to heuristic solutions. TIM/TIM+ [7] significantly improved
the efficiency of [12] and is the first RIS-based approximate
algorithm to achieve competitive efficiency with heuristic
algorithms. Afterwards, IMM [2] and SSA/D-SSA [5] were
presented, both of which have been recognized as the state-of-
the-art solution that achieve the best efficiency [13]. Notably,
none of these efforts integrate machine learning with the ™
problem to further enhance the performance.

In recent years, there have been increasing efforts to address
the IM problem utilizing learning methods. [14], [15], [16],
[17] have employed RL to find best strategy in competitive IM
problem [18], [19]. Both of [14], [15] treat the competition
between multiple parties as an adversarial game; and employ
reinforcement learning to find the best policy (i.e., strategy)
that can maximize the profit given the opponents’ choices. [20]
uses deep learning to learn topic-aware influence in order to
solve the Topic-Aware IM problem. In contrast, we propose a
learning model for general IM problem and pre-trained model
pool for practical applications without training from scratch.
The authors in [16] employ deep learning to infer the entity
correlations and influence cascading behavior. They do not
natively model the influence estimation as a learning task and
hence it is orthogonal to our problem. Besides, [21], [22] adopt
learning methods to study the diffusion model and optimize
the linear threshold model parameters, respectively. They do
not consider IM as a machine learning problem and are also
orthogonal to our problem. [23] studied seed selection in
multiple communities. They converted their multi-community
coverage maximization problem into a resource allocation
problem. Instead of finding seeds from the given network,
they used reinforcement learning to study how to assign
selected seeds among multiple communities. [21] separates
the framework from the breakthrough diffusion model, and
uses the learning framework to learn the factors that affect
information dissemination. And we believe that the basic
diffusion model is very important for the good operation of the
existing IM algorithm, because it is different from our problem
setting.

Recently, [24] used deep Q-learning to discover subgraph
that can act as a surrogate to the entire network. They select the
influential node set as the target set of the entire network by ap-
plying the traditional IM algorithm on the obtained subgraph,
which is orthogonal to our strategy. Besides, DeepIM [25]
employs Word2vec model to learn the structural vectors for
each node in a network. By using Word2vec, nodes that are
observed in many paths are similar to each other, and is then
believed to influence each other during information diffusion.
Accordingly, DeepIM propose to record a relevant vector to
mark down those nodes that appeared as similar to a target
node. A node appearing in the most relevant vector is believed
to exhibit the most influence. DeepIM is acknowledged as
an early effort in addressing IM via network embedding. In
comparison, it only learns network embeddings purely from
linkage of the network, while our solution incorporate the
embedding and influence quality into a unified learning model.
Thus, the embedding learning phase in our model is influence-

JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

driven and can better reflect the quality of influence for
each node. Secondly, by integrating embedding and influence
quality learning into an end-to-end manner, the quality of each
particular action in our model is particularly computed with
respect to the current embeddings for all the nodes. As a result,
the embeddings and action rewards for each selection step
are closely associated with the temporal state of selection,
while DeepIM does not satisfy this fact. Thirdly, DeepIM
requires embedding the nodes from scratch for each target
network, thus it requires training for every independent task.
In comparison, we provide in PIANO a pair of application
models, namely PIANO-E and PIANO@(d), that do not require
training for addressing IM. GCOMB [26] is a recent solution
towards combinatorial optimization over large graph. The key
contribution of GCOMB is its hybrid learning model, i.e.,
combining both supervised and reinforcement learning. By
introducing a supervised learning step into the Q-learning
framework, GCOMB can filter out ‘bad nodes’ at an early
step, such that it shows excellent scalability comparing with
baselines. However, in stochastic processes, such as 1M, it is
hard to distinguish good nodes from bad ones. In another word,
as each influence spread instance is in fact a single sample
from the possible world, which is a combinatorial space,
‘good nodes’ identified in a limited training samples cannot be
always ‘good’. Similarly, those filtered out cannot be always
‘bad’. Hence, GCOMB performs excellent on the graphs
where good and bad nodes have already been distinguished
in a supervised manner, but shows poor generality, especially
when the good and bad cannot be (or there is not enough time
to be) distinguished beforehand, which will be justified in our
experimental study.

Network Embedding Methods. Network embedding learns a
mapping function that converts each node in a network into
a vector representation. The learned vectors can be used as
features for solving various downstream tasks, such as classifi-
cation, clustering, and link prediction. The major benefit is that
the resulting vector representation can be directly fed into most
machine learning models to solve specific problems. When
solving the IM problem, we can map the influence information
of the nodes in the network to the vector through the network
embedding method, and approximate this mapping through
the deep reinforcement learning technology to complete the
prediction of the expected influence of the node.

Early methods for learning node representations focused
primarily on matrix decomposition, which was directly in-
spired by classical techniques for dimensionality reduction
[27]. However, these methods introduce a lot of computational
cost. Recent approaches aim to learn the embedding of nodes
based on random walks as word contexts. DeepWalk [28] was
proposed as the first network embedding method using deep
learning technology, which compensates for the gap between
language modeling and network modeling by treating nodes
as words and generating short random walks. LINE [29] uses
the Breadth First Search strategy to generate context nodes,
in which only nodes that are up to two hops from a given
node are considered to be neighbors. In addition, it uses
negative sampling to optimize the Skip-gram model compared
to the layered softmax used in DeepWalk. node2vec [30] is

a sequence extraction strategy optimized for random walks
on DeepWalk framework. It introduces a biased random walk
program that combines Breadth First Search and Depth First
Search during neighborhood exploration. SDNE [31] captures
the nonlinear dependency between nodes by maintaining the
proximity between 2-hop neighbors through a deep autoen-
coder. It designs an objective function that describes both
local and global network information, using a semi-supervised
approach to fit optimization. There is also a kernel-based
approach where the feature vectors of the graph come from
various graphics kernels [32]. Structure2vec [4] models each
structured data point as a latent variable model, then embeds
the graphical model into the feature space, and uses the inner
product in the embedded space to define the kernel, which can
monitor the learning of the graphical structure. Deeplnf [33]
presents an end-to-end model to learn the probability of a
user’s action status conditioned on her local neighborhood.

III. PROBLEM STATEMENT

In this section, we first formally present IM as a learning-
based problem. Next, we briefly describe the information
diffusion models discussed in these definitions.

A. Problem Definition

Let G = (V, E,W) be a social network, where |E| = m,
and |V| = n. (u,v) € E represents an edge from node u to
node v. Let W (u,v) denote the weight of the edge indicating
the strength of the influence. Accordingly, the IM problem can
be formally defined as follows.

Definition 1. (Influence Maximization) Given a social net-
work G = (V,E,W), an information diffusion model 1,
integer k, the influence maximization problem aims to select
k nodes as the seed set S (S C V), such that, under the
diffusion model 1, the expected number of influenced nodes
by S, namely o(S), is maximized. The problem can be
formulated as argmax o(S) s.t. |[S| = k.

As 1M is proved to be NP-hard [1], all approximate solutions
need to greedily select the next seed with the maximum
marginal improvement in expected influence. In particular, let
S; be a partial solution with ¢ seeds (i.e., ¢ < k), then in
(i + 1)-th iteration, an approximate algorithm shall choose
a node v, such that o(S;41) — 0(S;) is maximized, where
Sit1 = S;|J{v}. To facilitate the following discussions, we
refer to o (v, S) as the maximum marginal expected influence
of v given a partial solution S. As o(v,S) is #P-hard to
calculate based on v and .S, traditional efforts in IM generate
unbiased estimates for o (v, S) using a set of RIS samples. In
this paper, we solve the IM problem by adopting a completely
different strategy i.e., a learning method. In our solution,
o(v,S) is not estimated using RIS-based sampling. Instead,
it is modeled as a parameterized function and approximated
using deep RL. To this end, we introduce the notion of
learning-based M problem.

The learning-based 1M problem consists of two phases,
namely, learning phase and inference phase. In the learn-
ing phase, given a set of homogeneous networks G =
{G1,...,Gy} and an information diffusion model 1), we train
a set of parameters © such that function y = (v, S;©) can

JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

be used to approximate o(v,.S) as accurately as possible. In
the inference phase, given a target network G, integer k and
a function y = &(v,S;©) that approximately calculates the
marginal influence of v w.rt. the partial solution .S, we solve
the IM problem in G w.r.t. budget k and diffusion model 1.

B. Diffusion Models

Based on the definition of IM, one can observe that a
diffusion model %) is vital for the selection of seeds. Currently,
there exist two popular diffusion models, namely Linear
Threshold (LT) and Independent Cascade (IC). Throughout
a diffusion process, a node has two possible states, activated
or inactivated. Both models assume that, when a node is
activated, its state will not change further.

Linear Threshold (LT) model. The LT model is a special case
of the triggering model [34]. To explain the concept briefly,
we introduce N (v) (resp., N"(v)), which is a set of (resp.,
activated) neighbors of node v where each node has a threshold
0,. Yu € N(v), an edge (v,u) has a non-negative weight
w(v,u) < 1. Given a graph G and a seed set .S, and the
threshold for each node, this model first activates the nodes in
S. Then it starts spreading in discrete timestamps according
to the following random rule. In each step, an inactivate node
v will be activated if 3>, nn(,) w(v,u) > 0,. The newly
activated node will attempt to activate its neighbors. The
process stops when no more nodes are activated.
Independent Cascade (1C) model. Given a graph G and a
seed set S C V, this model first activates the nodes in S, and
then starts spreading in discrete timestamps according to the
following rule. When a node w is first activated at timestamp
t, it gets a chance to activate a node in its neighborhood that is
not activated. The success probability of activation is w(u, v).
If v is activated successfully, v will become an active node
in step £ + 1 and u can no longer activate other nodes in
subsequent steps. This process continues until no new nodes
can be activated. In other words, whether u can activate v is
not affected by previous propagation.

IV. LEARNING THE MAPPING FUNCTION

In traditional approximate IM solutions it is inevitable to
sample the diffusion phase to generate a set of RIS samples.
The cardinality of this set is at least as large as the threshold 6.
In this paper, we turn to machine learning methods to avoid
the traditional diffusion sampling phase in seed selection to
make it more generalizable and scalable. In this section, we
shall present our PIANO framework that casts the IM problem
as finding the optimal policy for selecting the seeds within
a deepRL framework. As remarked earlier, the key challenge
in IM lies in the estimation of expected influence function
o(v,S). In our deep RL framework, o(v,S) plays the role
of values (i.e., the expected return for selecting action v in
state .5), which we approximate with value function 5 (v, S; ©)
as accurately as possible. Note that since the IM problem is
NP-hard, the ground-truth label for o is hard to acquire to
train a supervised model. In PIANO, we adopt Deep Q-Network
(DQN) [3], a popular deep RL model to learn the parameters
© from reward.

Next, we introduce the learning phase of PIANO, which
consists of network embedding, training of the parameters ©,

and approximating o with ¢ for use in DQN. The test phase
for selecting nodes according to the learned parameters and
predicted influences is detailed in the next section.

A. Embedding the Nodes

Before DQN model can be applied, we shall first embed the
nodes into feature vectors based on the topological informa-
tion. To this end, we need the embedding of each node v € V'
as a vector xy. Among series of embedding methods, e.g.,
DeepWalk [28], node2vec [30], Deeplnf [33], etc., we select
Structure2vec [4] to accomplish this step due to the following
reasons. Firstly, the other alternatives are ‘transductive’ em-
bedding methods, that is, they assume that the test graph is ob-
served during training of embeddings. As a result, embeddings
extracted across graphs are not consistent, since they only care
about intra-graph proximity. In our framework, we aim to use
an ‘inductive’ method to complete the cross-graph extraction
of embedded results. This means that the parameters trained
in the subgraphs can be applied to the target graph. Secondly,
since they are unsupervised network embedding methods (i.e.,
DeepWalk and node2vec) or supervised for a particular task
(i.e., Deeplnf), they may not capture the desired information
(i.e., expected influence spread) for the IM problem. In our
case, the network embedding is trained end-to-end for the
optimization target (RL reward), thus the encoded features can
be more discriminative for the IM task.

Structure2vec learns nonlinear mapping with discriminative
information using stochastic gradient descent, and embeds
latent variable models into feature space. It combines the
characteristics of nodes, edges and network structure in the
target network. These characteristics will recursively aggre-
gate according to the state of the target network. Notably,
Structure2vec can learn the embedding of nodes in an end-
to-end manner through the combination with DQN. That is,
the parameters learned from such combination are exclusively
suitable for the test network and application scenarios.

Given the current partial solution S, Structure2vec will
calculate the g-dimensional feature embedding for each node v
(v € V). Firstly, we initialize the vectors of all nodes and set
each of them as a ¢-dimensional zero vector!. Then Struc-
ture2vec recursively defines the network architecture based
on the input network structure (. After I iterations, (I is
usually small, set to 4 or less), each node v reaches to the final
state, and the embedding at this time can simultaneously take
into account the topological features and remote interaction
between these nodes. In addition, in the IM scenario, each
node also needs a specific flag to indicate whether node v is
in the partial solution S or not, which is denoted as a,. That
is, a, = 1 if the node appears in the seed set S, otherwise
a, = 0. Because Structure2vec is implemented in a scheme
similar to the network model inference process, the nodes’
specific label a, is also recursively aggregated according to
the input network topology.

The formula for the update of vectors is as follows:

:r,‘g,i> := ReLU (a1 Z x$71)+a2 Z ReLU (azw(v,u))+asay).
u€EN (v) u€EN (v)

()]

'In line with [4], q is generally set to 64, it can be adjusted according to
the size of the network

JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

ll _—

x Reward and State

[—]
Enviroment

LU_’

£ —Fd -

’fz U exploratlun
zs exploztatmn Ga)- @ @

& — policy Action

B

" ,,, i
Greedy
Tselection

i
A

v
£. Ae
3 Xg
2

Greed,
selection

Fig. 1: PIANO framework by incorporating network embedding and deep reinforcement learning. (with k = 3)

In Eq. 1, ReLU refers to the non-linear activation Rectified
Linear Unit, N (v) is the neighbor set of node v, xg,l) represents
the vector of node v during the i-th iteration, w(v,u) is the
weight of edge (v,u), and ayq, ..., a4 are the parameters that
need to be trained. Although all the neighbors of each node v
remain unchanged during the update process, in order to better
model the nonlinear mapping of the input space, we add two
parameters ae and ag to construct two independent layers of
Multi-Layer Perceptron in the above formula.

It can be seen that the first two items in the equation
aggregate the surrounding information by summing up the
neighbors of v. Besides, during the iterations, the update
formula can also pass information and network characteristics
of a node across iterations. When the embeddings of all nodes
have been updated, the next iteration begins. After [iterations,
the vector of v will contain information about all neighbors
within the I-hop neighborhood.

B. The Reinforcement Learning Formulation

In the IM problem, we are unable to acquire sufficient
labeled samples for training the parameters © in a supervised
way, as the exact evaluation of o(v,S) is #P-hard. Hence,
we frame the IM problem as policy optimization through
deep RL, where the learning task is to find the optimal
policy (action sequence) for selecting the seed nodes. The
deep RL formulation enables end-to-end learning from the
Agent’s Perception to Action and automatically learns complex
features suitable for the task. In our IM scenario, the Agent
is the machine (computer program) that is learning to act
(selecting seed nodes) optimally in an unknown and uncertain
Environment (a network). The whole decision making process
is modeled as a Markov Decision Process (MDP), where at
each time step t, the agent perceives a state S; (the current
observation of the environment), performs an action A; and
gets a reward R;; while moving to the next state S; 1, and
the process continues for an episode. For the IM problem, we
define these RL components as follows:

o State: S; is the current configuration of the network
G, where some nodes have already been selected as
seed set and some have not. The final state Sj is the
configuration where k nodes have been selected. The state
representation of G is given by the network embedding
method described above.

e Action: A; adds a node v (v € S) to the current seed set
S. In model-free RL, policy optimization needs values
(total expected return) for state-action pairs, which we

approximate using & (v, S; ©), i.e., the expected return
for selecting node v at state S;. We define the value
function formally in Eq. 2.

Reward: The environment returns a reward R;; € R for
its action A; = v in state S; (i.e., for adding node v to the
current seed set), and moves to state S;y1. The increment
of the influence range is the reward for selecting v node
in state St, Rt+1(St,At = U) = O'(;S}+1) — O'(St).

State transition: When a node v € S is selected into S,
a,, will change from O to 1. This will in turn change the
node embeddings (or state) as shown in Eq. 1.

e Episode: A training episode &£ is a se-
quence of state-action-reward values & =
(Sl, Al, Rg, ey Sk, Ak, Rk+1).

Optimal policy: The goal in RL is to find the pol-
icy, i.e., action sequence m, = (Aj,...Ay) that gives
the maximum cumulative reward (or return) defined as
E[Y, R(Si, 4; = v)].

We frame IM as a model-free value-based RL problem [35] that
finds the optimal policy 7, implicitly in terms of state-action
values. Following the RL terminology, we will use @ function
to refer to the state-action value function, i.e., Q(v,S; ©)
& (v, St; ©). In state Sy, the Q(v, S¢, ©) for node/action Ay
v is defined as follows:

Q(v,5:0) := B ReLU([B2 Y wu, B3y]).

ueV

(@)

where 2! € RY is the vector generated after [iterations; [,] is
the concatenation operator; and 8; € R'28, 3,, B3 € R64x64,
Because Q(v, S¢; ©) is mainly determined by the embedding
of the current node v and its surrounding (/-hop) neighbors
and their status (selected or not), the () function is related
to the parameters a; ~ g, ~ [, all of which are
learned end-to-end. We denote all these parameters using ©
for simplicity.

The optimal @) function (specifically, the learned ©) im-
plicitly represents the optimal policy to find the k-best seed
nodes. Given the network G, a budget of k£ nodes, a seed
set S, and S = V\S as a set of candidate nodes, at each
step t, upon evaluating the quality of each node using the @
function, the node with the highest) value (i.e., marginal
expected influence) is added to the seed set S. Formally,
Ay = argmaz,c3Q(v, S, ©). After adding a new node v
to the seed set, a, is changed from O to 1. In the new
state S¢41, all node embeddings need to be updated, and the

Q(v,S¢4+1;0) for the remaining nodes v € S need to be

JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

Algorithm 1: The complete training procedure

Input: Batch of training network, a positive number k,experience replay
memory J to capacity N.
Output: parameters © = {a1, .. , B3}

1 for episode e = 0;e < E do

Sy, B,

2 Given a networks G and set seed set S = ¢;
3 parameters © = {a1,...,a4,B1,. .., B3}=0;
4 e_start = 1,e_end = 0.05, maz_iter = 10, 000;
5 for i = 0 to 10 do
6 L Pre-training parameters © with small graphs;
7 for iter to mazx_iter do
8 update e through e_start,e_end and iter;
9 save training model when iter = 300;
10 generate new training network when ¢ter = 5000;
11 for i =01t k — 1 do
12 for j =0t I —1do
13 for v € V do
14 () .= ReLU(c; > ueN() G0 4
@2 3, e N (o) ReLU (asw(v, u)) + auay);
15 for v € V do
16 | Qv,8,0) =p1"TReLU([B2 3 ,.cv 74, Bazh))s
o o — Random node v € S, w.p. €
7 \argmaz,csQ(v, S,0), wp.1—¢’
18 add v; to §';
19 update S, S
20 if ¢ > § then
21 Add tuple (S;, a;, Z:+6 R;,Sits) 0 T
22 Sample random batch from j ~ J;
23 Update © by SGD with j;
24 if e==0.5 then
25 L break;

reevaluated to select the next node A;y; = v’ in S. This
process is continued £ times.

C. Model Training via DON

We use the well-known DQN (Deep Q-Network) algorithm
[3], [36] to learn the @ function Q(v, S;©). Since Q(v, S; ©)
is modeled as a deep neural network (the graph embedding
model), it is also called a ()-net. DQN exhibits several advan-
tages over other existing RL algorithms. It gives stability to
Q-learning through the use of experience replay and Q-targets.
Experience replay is a technique where the network uses off-
policy learning to learn from experiences generated by old
policies as opposed to online learning where the experiences
are thrown away. This gives DQN sample efficiency compared
to policy-based RL (e.g., policy gradients), which only uses on-
policy samples. Experience replay also helps to de-correlate
the trajectories (action sequences) exhibiting better learning
path. The loss function used by our DQN can be defined as:

inference net

—_——
L(8) =E[(r + ymaxQ(v',s";0) —

learner net

—
Qw,s0))’ 3
N——

Q-net (e-greedy policy)

Q-target (greedy policy)

where v is a decaying factor, which controls the importance of
future rewards in learning. If v = 0, the model will not learn
any thing from future (short-sighted), and only pay attention
to the current reward; for v >= 1, the expected return is
continuously accumulated and may diverge. Therefore, vy is
generally set to a number slightly smaller than 1 (e.g., 0.95 in
our implementation).

The training process is outlined in Algorithm 1, including
both graph embedding and deep Q network training.. Our
behaviour policy is e-greedy, which selects a random node

with probability e (exploration), and with probability (1 — ¢)
it selects a node greedily (exploitation). We vary ¢ within
0.05 ~ 1 in our implementation to find the best model. We
use a batch of homogeneous networks for training. An episode
represents the process of obtaining a complete sequence of
a network seed set S (Lines 1-25). For each network, the
seed set S is first initialized (Lines 2). According to the
embedding process discussed in the paper, we update the
nodes’ embeddings and calculate the @) value for each node
(Lines 11-16). After getting the influence quality of each node,
we apply the aforementioned e-greedy policy. The selected
node is then added to the seed set (Lines 17-18). These tuples
are added to the replay memory J from which a random batch
of tuples is selected (with IID assumption) to update © with
SGD (Lines 20-23). For each iteration in a training episode,
we shall perform k-rounds of updates. During each update,
the embedding for each node should be iteratively updated by
I rounds, where each round of updates requires traversing all
the neighboring nodes through the edges (i.e., upper bounded
by |E|). Taking all the above together, the time (resp., space)
complexity for training an episode in each iteration requires
O(KI|E||V]) (resp., O(gd[V'|).

An overview of the PIANO framework is depicted in Fig. 1,
where the top half depicts the learning phase while the bottom
half illustrates the test phase (i.e., seed selection). In particular,
given 4 training samples (i.e., networks shown in the left
top corner), we first perform learning over them to infer the
parameters «, 3. For instance, use the second training sample
as an example (a 5-nodes network), we encode each node using
a g—dimensional vector, which shall be iteratively updated
via Eq. 1. Further, the embedding of each node is further
incorporated into DQN, whose Q-function is outlined in Eq. 2.
By training the DQN, we are able to find the values of «, 3.

For the seeds selection phase, given the values of «, 3, we
are able to directly apply them in Eq. 1 and 2 to calculate
the node embedding and the reward for each action given
the current state. In particular, given a network with 8 nodes
shown in the left bottom corner in the figure, by substituting
aq, ..., a4 with the learned values into Eq. 1, the embedding
(a g—dimensional vector) for each node can be acquired (see
the second network in the bottom half of Fig. 1). Afterwards,
by inserting the learned values of (1,..., 33 into Eq. 2, we
can acquire the initial Q-value (in DQN) of each node (when
there is no seed selected) as well as the reward of each action
(the quality of selecting each node into the seeds). Given that,
we can select the first seed, which exhibit the highest Q-value
(i.e., x1 in the network, as shown in the 3rd and 4th network in
the bottom half of the figure). Accordingly, the reward of each
particular action is updated, by eliminating the selected seeds
from the network. Afterwards, we shall select other nodes with
the highest Q-value into the seeds set iteratively, until there
are k (e.g., 3 in the example shown in Fig. 1) seeds.

V. SEEDS SELECTION

The training process results in the learned parameters O,
which implicitly represent the learned optimal policy. Once
the parameters are learned, they can be used to address IM
problem in multiple networks. In this section, we describe the

JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

Algorithm 2: Seeds selection procedure

Input: network G = (V, E, W), a positive number k, parameters
© ={ai,...,a4,p1,...,03}
Output: optimal solution S,
1 Initialize a seed set S = ¢ and {?) = 0(v € V).
2 for j =11t Ido

3 for v € V' do]
4 () .= ReLU(a; > weN (o 2D +
@2 Y, en(v) ReLU(asw(v, u)) + caay)

for v € V do
| Q,0;0) =BT ReLU([B2 X, cy =, Bswh])
7 S <—top-k node v with the highest Q (v, 0; ©);

N

test phase of PIANO framework, i.e., online selection of seeds.

A. Generating Result Set via Learned Function

As we have learned all the parameters in (v, S;©), we
are able to directly predict the expected marginal influence
for each node. Afterwards, intuitively, it is natural for one
to follow the existing hill-climb strategy to iteratively select
the best node that exhibits the highest predicted marginal
influence. However, our empirical and theoretical studies [37]
reveal that the order of the nodes with respect to their @
values remains almost unchanged whenever we select a seed
and recompute the network embeddings as well as the @)
values. Therefore, during the seeds selection phase, instead of
iteratively select-and-recompute the embeddings and () values
according to each seed insertion, we simplify the procedure
into only one iteration, by embedding only once and selecting
the top-k nodes with the maximum Q).

The seeds selection process is outlined in Algorithm 2.
Given a network G and a budget k, we first initialize each node
in the network as a p-dimensional zero vector and perform em-
beddings according to Equation 1 using the learned parameters
aq,...,oq4. Afterwards, the influence quality of each node
v is evaluated using Equation 2 via the learned parameters
b1, - .., Ps. Finally, the node with the top-k influence quality
is added to the seed set.

The time complexity of the selection process is determined
by three parts. First, in the embedding phase, the complexity
is influenced by the number of nodes |V| and the number of
neighbors | N (v)|. As I is usually a small constant (e.g., I = 4)
in Algorithm 2, network embedding takes O(|V| x |N(v)|).
Second, after all the nodes in the network are embedded,
the quality of nodes in the graph is evaluated using the
formula Q(v, S,0) = f17 ReLU (|2 > wev Tk, Bsxl]). Since
the values of © have been learned, this step is influenced
by the time taken to find the neighbors of node v. Hence, it
takes O(|V'| x| N (v)]|) time. Finally, selecting the optimal node
according to @ function and adding the node to the set .S takes
O(]V]). Consequently, the total time (resp., space) complexity
for seeds selection is O(|V| x |N(v)]) (resp., O(q|V])).

B. Applying PIANO in Practice

As a learning-based framework, we need to pretrain the
embedding and) function parameters offline using a group
of training networks. Intuitively, the training and testing (i.e.,
target) networks should be homogeneous in terms of topology
such that the quality of the learned parameters can be guaran-
teed. In general, the homogeneity in terms of topology can be

reflected w.r.t topological properties, e.g., degree distribution,
spectrum, etc. Therefore, in order to select seeds within a
targeted network, we need to train the required parameters ©
in a group of homogeneous networks offline. Afterwards, the
trained model can be further used to select seeds in a target net-
work. In the following, depending on the specific characteristic
of target networks, we shall present three pretraining strategies,
namely PIANO-S, PIANO-E and PIANOQ(d), respectively.
PIANO-S: applying PIANO in large-scale stationary net-
works. Consider a large-scale stationary network without any
evolution log. We can turn to subgraph-sampling technique
to generate sufficient homogeneous training networks. After-
wards, with learned parameters © from these small networks,
we can address IM over the target large-scale network. In order
to ensure that the topological features of the sampled training
subgraphs are as consistent as possible with the original
large-scale target network, we evaluate different sampling
algorithms following the same framework adopted in [38],
[39]. In particular, we apply different sampling methods to
real large-scale networks and sample subgraphs over a series
of sample fractions ¢ = [1%, 5%, 10%, 15%]. Following the
methods introduced in [38], Kolmogorov-Smirnov D-statistic
is adopted to measure the differences between the network
statistics distributions of the sampled subgraphs and the origi-
nal graph, where D-statistic is typically applied as part of the
Komogorov-Smirnov test to reject the null hypothesis. It is
defined as D = max,{|Fo(z) — F(x)|}, where denotes the
range of random variables; Fjy and F' are two empirical distri-
bution functions of z. Our experimental results show similar
phenomenon with the benchmarking papers [38], [39]. That
is, Topology-Based Sampling is superior to Node Sampling
and Edge Sampling in the distribution of graph features such
as degree distribution and clustering coefficient distribution.
So in the next section, we adopt Topology-Based sampling
methods in our model and compare several existing Topology-
Based subgraph sampling methods, including Breadth First
Sampling (BFS)[40], Simple Random Walk (SRW) and its
variants, namely Random Walk with Flyback (RWF) and
Induced Subgraph Random Walk Sampling (ISRW) [41], as
well as Snowball Sampling (SB)[42], a variant of Breadth First
Search which limits the number of neighbors that are added
to the sample. Notably, as the subgraph-sampling technique is
beyond the focus of this work, we do not discuss the detailed
techniques for these methods.

PIANO-E: applying PIANO in evolutionary networks. Al-
most all existing social networks evolve with time as nodes
and edges are inserted or deleted. However, the structural
properties remain relatively stable [43]. During the evolution
of a particular real-world network, we advocate that any two
historical snapshots of the same network are homogeneous to
each other. By leveraging on the aforementioned technique,
we briefly describe how PIANO can address the IM problem
in dynamic networks via time-based sampling. In particular,
given a dynamic network (, whose snapshot at time t is
referred to as G, we can apply PIANO in the following
way. During the Learning phase, we can train the model
using a series of temporal (sampled) network snapshots (i.e.,
G = {Gu,...,Gu}). For the Seeds selection phase, the

JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

TABLE I: Datasets

Dataset n m Type Avg.Degree
HepPh 34K 421K Directed 9.83
DBLP 317K 1.05M Undirected 3.31
LiveJournal 4.85M 69M Directed 6.5
Orkut 3.07M 117.1M Undirected 4.8

trained model can be used to select the best seed set in
an arbitrary snapshot of G. Besides, if any snapshot of the
network is very large, we can also adopt the subgraph sampling
method mentioned above. Based on this strategy, we can
accomplish the seeds selection task over a target network
in real-time, although it keeps on evolving. This provides a
practical solution for the IM problem in evolutionary networks.
PIANO@(d): applying PIANO with our pre-trained model
pool. In addition to the above approaches, we provide a user-
friendly method for applying PTANO in practice, i.e., pretrained
once and apply everywhere. We build a model pool by
pretraining a series of PIANO models, each is learned over 200
synthetic networks (each contains 500 nodes) with identical
average degree at 3,4,....,9, respectively via SNAP tool?,
using its ForestFire graph generation model (method name:
GenForestFire), which generates random graph with given
probabilities (under Forest Fire graph model). By varying the
probabilities, we generate a series of random graphs (each
contains 500 nodes) with different average degrees. We further
group the graphs with an average degree at [d—0.05, d+0.05]
to group d, where d = 3,4, ...,9. For each group, we train an
independent PIANO model. For instance, we can train a PIANO
model from 200 synthetic networks with average degree of
5, referred to as PIANO@b5. Given a target network G (with
average degree d) for 1M, we can find from our model pool
PIANO@Q(d), where (-) refers to the closest integer of d, and
directly apply that on G without training again. The detailed
justification and evaluation of the pretrained model pool is
given in the next section.
VI. EXPERIMENTS

In this section, we evaluate the performance of the PIANO
framework. We compare our model with two state-of-the-art
traditional IM solutions, namely IMM [2] and SSA [5], as
suggested by a recent benchmarking study [11], as well as
a latest deep learning based solution, namely GCOMB [26].
Recall that the efforts in [14], [15], [44], [45] are designed for
competitive IM and hence are orthogonal to our problem. In
line with all the IM solutions, we evaluate the performances
from two aspects, namely computational efficiency and influ-
ence quality. Besides, as a learning-based solution, we also
justify our model generality within evolutionary scenarios. All
the experiments were performed on a machine with Intel Xeon
CPU (2.2GHz, 20 cores), 512GB of DDR4 RAM, Nvidia Tesla
K80 with 24GB GDDRS3, running Ubuntu 16.04°.

A. Experimental Setup

Datasets. In the experiments, we present results on four
real-world social networks, taken from the SNAP repository*,
as shown in Table I. In these four datasets, HepPh and DBLP

Zhttps://snap.stanford.edu/snap/
3The src code is available in https:/github.com/lihuixidian/PIANO.
“https://snap.stanford.edu/data/

are citation networks, LiveJournal and Orkut are the largest
online social networks ever used in influence maximization.
For each real-world network, we use the following sampling
methods: Breadth First Sampling (BFS) [40], Simple Random
Walk (SRW), Induced Subgraph Random Walk Sampling
(ISRW) [41], and Snowball Sampling (SB) [42].

Diffusion Models. PIANO can be easily adapted to different
diffusion models. For instance, we can simply revise the
Reward definition to switch from IC model to LT model. As
our experimental results under both LT and IC models are
qualitatively similar, we mainly report the results under the
I1C model here. In IC model, each edge w(u, v) has a constant
probability p. In vast majority of the 1M techniques, w(u,v)
takes the value of 0.5 assigned to all the edges of the network.
In order to fairly calculate the expected range of influence
for the three approaches, we first record the seed set of each
algorithm independently, and then perform 10,000 simulated
propagations based on the selected seeds. Finally, we take
the average result of 10,000 simulations as the number of
influenced nodes for each tested approach.

Training data generation: Use ISRW, BFS, SRW, Snow-

ball sampling methods to sample from the original network.
The size of the sampled subgraph is determined by the size
of the original graph. In our experiment, we set the number
of edges of the sampled subgraph to 0.1% of the entire
corresponding graph. Although we do not limit the number of
points in the subgraph, we hope that the method you choose
should be able to maintain the ratio between the number of
points and edges in the original graph.
Parameter settings: For the learning rate, we use exponential
decay after a certain number of steps, where the decay factor
v is fixed to 0.95. We also anneal the exploration probability
€ from 1.0 to 0.05 in a linear way. We set the batch size, i.e.,
the number of samples extracted from M each time, as 64.
Besides, we set ¢ as 5 and the learning rate of SGD to 0.001.
We set the embedding dimension as 64.

As suggested in IMM [2], we set € = 0.1 throughout the
experiments in both IMM and SSA. It should be noted that the
seed set produced by SSA is not constant. Therefore, for SSA
and IMM, we report the average results over 100 independent
runs (i.e., 100 independent results seed sets, each of which is
averaged for 10,000 simulations).

B. Experimental Results

Training issues. As remarked earlier, during DQN training,
we need to obtain a batch of training graphs by sampling the
real-world network. In our experiments, we mainly compare
the aforementioned four sampling methods (BFS, ISRW,
Snowball, and SRW). The results are shown in Fig. 2. Ob-
serve that the results of trained PIANO-S obtained by using
different Topology-Based sampling methods have negligible
differences, indicating that these sampling methods have little
impact on the result seeds quality. Therefore, we chose to
use simple and mature BFS (Breadth First Sampling) as the
default method in rest of the experiments.

Given the sampled sub-networks, we train the DQN param-
eters using e-greedy exploration described in Section IV-C.
That is, the next action is randomly selected with probability

JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

. o l-@ s R - o5 . & . STe s
g @ =&~ Snowball ‘g O 1 =~ Snowball 'g © g ,,)Q =&~ Snowball
£ A ISRW s 8 ISRW G’ S e 9 ISRW
= Ay £ 2R £ <
= - sRw RN - srRw 2 Vo SN - srRw
PSS s S . O s &
g & N] v -@- BFS 2 &
2 s 255 | 28 |
EENS o ES | EJs * sw EES
; L $
Y, ¥ v v v T y v T
Vo0 20 30 40 50 & 10 20 30 40 50 & 10 20 30 40 50 L 10 20 30 40 50
Seed Size k v Seed Size k v Seed Size k Seed Size k
(a) HepPh (b) DBLP (c) LiveJournal (d) Orkut
Fig. 2: Influence spreads with different sampling algorithms.
104 A
PIANO-S’ —6— PIANO-S —6— h——2— PIANO-S —6—
0 SSA —e— 0 SSA —e— 10t SSA —e— 4 PIANO-S —%
— 10 IMM —A— - IMM —A— - IMM —A— -
2 > 3 @ MM —a—
2 GCOMB —#— 2 GCoMB —m— | £ GCOMB —@— = GCOMB —=
£ 10 rE £ ° . E 4
) 4) E E 10— —o—0o—»
o0 o0 14 o0 on
E 1 . £ 10 £ - £
£ 10 Ad ® z =l £
£ £ £ £
: E o E .
10 A)) 10% 5 /
L. 0 107 o
1071 10)
20 30 40 50 60 70 80 90 100 20 30 40 50 60 70 80 90 100 20 30 40 50 60 70 80 90 100 20 30 40 50 60 70 80 90 100
Seed Size (k) Seed Size (k) Seed Size (k) Seed Size (k)
(a) HepPh (b) DBLP (c) LiveJournal (d) Orkut
Fig. 3: Running time.
22750 48400
PIANO-S —6— PIANO'S —6— PIANO-S —&—
22700 SSA —e— > 48200 SSA —e— 1 SSA —e—
- IMM —A— i, 48000 IMM —A— b . IMM —&—
T 2650 | GCOMB —m— E 47800 | GCOMB —#—] RN
2 g 2 N
2 2 47600 g = @Q
8 22600 g 47400 3 g &
= = = =
47200 5
2 22550 2 47000 2 E §§
= = = =
= = = = 8
22500 ¢ 32288 N
1
2245 46400

0
20 30 40 50 60 70 80 90 100
Seed Size (k)

(a) HepPh

20 30 40 50 60 70 80 90 100
Seed Size (k)

(b) DBLP
Fig. 4: Influence

e, and the action of maximizing the () function is selected
with probability 1 — €. During training, ¢ is linearly annealed
from 1 to 0.05 in ten thousand steps. The training procedure
terminates when the value of ¢ is less than 0.05 or the
training time exceeds 3 days. For both HepPh, DBLP, the
training phases terminate at 2.5 and 23.5 hours, respectively;
for LiveJournal and Orkut, we limit the training time within
3 days and apply the learned parameters to node selection.
Notably, the training phase is performed only once and we
do not need to train while running an IM query. The study
of PIANO-E on evolutionary networks further justifies that,
once trained, it can be applied many times to address the M
problem.
Computational efficiency. We compare the running times
of the three algorithms by varying k& from 20 to 100. The
results on HepPh, DBLP, LiveJournal and Orkut are reported
in Fig. 3. We can make the following observations. In terms
of computational efficiency, PIANO-S significantly outperforms
IMM and SSA by a huge margin. Regardless of the value of &,
the cost of PIANO-S is significantly less than that of IMM and
SSA. Admittedly, traditional solution like IMM and SSA do not
require training time, while PIANO, especially PIANO-S has to
perform training before answering IM. In comparison, as we
shall see in both PIANO-E and PIANO@(d), once a model is
trained in a network, it can be used in IM tasks over a series
other networks. In practical applications, answering such IM
problems only need to perform seeds selection under PIANO-E

20 30 40 50 60 70 80 90 100
Seed Size (k)

(d) Orkut

30 40 50 60 70 80 90 100
Seed Size (k)

(c) LiveJournal
spreads quality.

and PIANO@Q(d), which does not include any training time.
Particularly, when the number of seed nodes selected is
small, the performance gain is more prominent. In addition,
as we select the nodes top k ranked nodes at the same time,
when we select seed sets of different sizes, the time variation
is small, but the premise of this experimental result is that we
have sorted the scores of all nodes (i.e., cost is O(nlogn)).
However, if k& nodes are directly selected from the unordered
set, the time required is only n x k. Therefore, the running
time of PIANO-S has increased significantly over k.
Influence quality. Next, we compare the quality of the seed
sets generated by IMM, SSA and PIANO-S. For each algorithm
we set the optimal parameter values according to their original
papers and then evaluate their quality. As can be seen from
Fig. 4, PIANO-S is as good as IMM and SSA in real networks of
different sizes, and the growth of influence spread with k have
few minor fluctuations. Note that the scales of the vertical axis
in the four figures are different. In comparison, our method can
choose superior result set, and the results are stable across
100 runs. Importantly, PIANO-S produces the same or even
better quality results as the state-of-the-art. In addition, the
author proposed in IMM that € is a tunable parameter. When
e = 0.1, the quality of the IMM seed set is equivalent to ours.
If we increase € although the time efficiency will increase, the
quality of the result will also decrease.
Performance of PIANO-E in evolutionary networks. We
evaluate the performance of PIANO on evolutionary networks

JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

22350

[/ 10.000-30,000
1 20.000-30,000
N 30.000-30,000

IS
[
@
=]
S

22250

Influence Spreads

22200

10 20 30 40 50
Seed Set K
Fig. 5: Performance of PIANO-E in evolutionary networks.

following the strategy discussed in Section V-B. Among all
the tested datasets, HepPh is associated with evolution logs,
i.e., the time-stamps when each node/edge is inserted to the
network. Therefore, following the proposed implementation
model of PIANO-E in evolutionary network, we train the model
using a series of temporal snapshots for HepPh networks when
it has 10,000, 20,000, and 30,000 nodes, respectively. Then
the three trained models are tested on a future snapshot of
the network containing 30,000 nodes. As can be seen in Fig.
5, the trained model from 10,000-nodes snapshot and that
from 30, 000-nodes ones have little differences in terms of the
influence quality. For instance, when the number of seeds is
50, the difference between 10, 000-nodes model and 30, 000-
nodes model in the influence spread is 224, which is about 1%
of the total influenced nodes. Therefore, in real-world dynamic
networks, PIANO-E can be easily trained using earlier snapshot
or even the subnetworks of some snapshots. When the network
evolves and expands, we can continue to use the pretrained
model for selecting seeds in a larger network snapshot.
Moreover, we compare the generality of PIANO-E and
GCOMB by varying the size of training snapshots and test
ones, based on the evolution logs of HepPh. To highlight
the effectiveness of trained model at an earlier snapshot over
the IM task at a later one, we showcase the relative influence
quality comparing with the influence spread of (training and)
running PIANO-S at the later snapshot. The results of both
PIANO-E and GCOMB are shown in Table II, where k is fixed as
50. For instance, in the first row, we train PIANO-E and GCOMB
using the 5000-node snapshot, and apply both models for seeds
selection at a later snapshot (i.e., with 10000, 20000, 30000
nodes respectively), without training again. We compute the
relative ratio on the number of influenced nodes with respect
to training and applying PIANO-S at the snapshots (i.e., 10000,
20000, 30000 nodes), respectively. Obviously, in all cases,
PIANO-E exhibits almost the same influence quality comparing
with training from scratch. In comparison, GCOMB shows
poor performance in this setting, up to 15% decrease in the
influence quality. This fact justify our discussion in Section II
that GCOMB highly relies on supervision of the nodes. In
scenarios where supervision is not practical, e.g., evolutionary
cases, the effectiveness shall drop down significantly.
Pre-trained model pool and generalization. According to
the above experiments, whenever one wants to apply PIANO
to address IM problem in a target network G, she by default
needs to sample a group (e.g., 200) of subgraphs of G and
train PIANO first. In this experiment, we extensively discuss
how this training phase can be pre-performed and avoided in
practical 1M tasks. That is, is it possible to provide a pretrained

TABLE II: Generality over evolutionary network.

Test snapshot

10000 | 20000 | 30000

Training

PIANO-E GCOMB PIANO-E GCOMB PIANO-E GCOMB
snapshot

96.8% 84.4% 94.6%
100% 100.1% 100% 96.2%
99.9% 98.1%

100% 99.9%

80.5% 92.9%
99.9%
99.9%
99.9% 97.6%
99.9% 98.8%

100% 99.9%

78.8%
94.3%
95.4%

10000
15000
20000
25000

\
\
5000
30000

PIANO model that can be directly applied (i.e., without training
phase) over a new target network for M task? To answer
the question, we generate a series of synthetic networks with
SNAP tool for training and evaluate the performance of the
corresponding learned model. We test its performance with
respect to the size and the generation schemes, and compare
its performance with the approach of sampling from the target
network. Herein, generation scheme refers to the golden rule
we adopt to guide the synthetic graph generation procedure. In
particular, we can generate synthetic graphs with a pre-defined
average degree (resp., power exponent of power-law degree
distribution, average clustering coefficient). Based on this
group of study, we are able to unveil the correlation between
the model performance and training graphs, and also provide
a high-level suggestion on how the training graphs should
be selected. We ensure that a particular network topological
property of the generated graph is consistent with the original
graph, and then change the size of the generated graphs, train
each batch of generated graphs to observe the changes in the
quality of the results. The results are shown in Fig. 6a and 6b
(p = 0.05).

Observe that as the size of training graphs increases from
10! to 102, the influence spreads for the learned model also
increase. As shown in Fig. 6a (resp., 6b), when the sizes
of training graphs are larger than 102, the performance of
the learned model remains unchanged. This means that small
training graphs are sufficient to train an accurate model as
long as the network topology of the training graph is consistent
with the target one. In addition, the training efficiency of small
graphs is superior to large graphs, which can be reduced from
a few days to a few hours. It can be seen from Fig. 6 that the
quality of the results obtained by the selection of different
topological properties shows negligible differences. Among
the three properties, we recommend that the average degree
of the generated graph and the original graph should be the
same to achieve the expected result quality. Besides, we also
compare the performance of training from synthetic graph and
sampled graph with the same size and average degree. Notably,
among all datasets, there is negligible difference between both
approaches. That is, a PTANO model trained over some syn-
thetic graphs can be directly applied to a real-world network
as long as they exhibit the same average degree. Therefore, we
build a model pool by pretraining a series of PIANO models,
each is learned over 200 synthetic networks (each contains
500 nodes) with identical average degrees (set to 3,4,...,9,
respectively). Given a target network G (with average degree
d), we can select from our model pool PIANOQ(d) and directly
apply it on G without training again. To justify the effect of our

JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

8000

82x10°

7000 —— Average Degree 3500
—— Power Exponent

—— Average Clustering Coefficient 3000

—— Average Degree
—— Power Exponent

, 6000

s

8000

—— Average Clustering Coefficient

-@- PiANO-S 4.4%10°| @~ PIANO-S

=& PIANO@10 =& PIANO@3

8x10°

5000

£ 6000 3000

4000

2000

3000

Influence Spread
Influence Spreads

2000

000

Influence Spreads

Influence Spreads

2000
1000

7.8x10°

7.6x10°

Influence spread
Influence spread

7.4x10°

72x10°

1000 50 100 10 200 250 300

Size of Train Graph 50

50 100 150 200 250 300
Size of Train Graph

10 20 30 40 50 10 20 40 50

100 0t ot

o it3 1o
Size of Train Graph

BLP

10°
Size of Train Graph

jt3

30
Seed Size k

d) DBLP

Seed Size k

(c) HepPh

. (2) HepPh . (bﬁD ! .. : . . .
Fig. 6: Performance of PIANO@(d): (a-b) varying the size of training graph and topological properties; (c-d) comparison with

sampling-based PTANO-S.

model pool, we compare the performance of PIANOQ@(d) with
PIANO-S, which trains the model from scratch (over subgraph
samples of the target network) in Fig. 6¢ and 6d. Observe that
there is little difference between PIANO-S and PIANOQ(d).

Summary of the results. Given the above experimental study,
we conclude the effectiveness of PIANO as follows. Firstly,
after training over the target network, PIANO-S achieves the
same effectiveness with the state-of-the-art solutions, including
IMM and SSA. Secondly, as PIANO-S requires training from
scratch each time, we propose PIANO@(d), which provide
a pre-trained model pool. Given the topology property of
the target network, e.g., average degree, we can directly
perform seeds selection based on a particular trained model
from the pool of PIANOQ(d). Empirical study demonstrate
that PIANOQ(d) achieves similar effectiveness as PIANO-S,
while avoiding the costly training phase. Thirdly, for dynamic
networks, our PIANO-E generalizes well, without reperforming
the training, to other evolutionary snapshots of the network
even if the number of nodes has been enlarged by 2 times.

VII. CONCLUSIONS

In this work, we have presented a novel framework, PIANO,
to address the IM problem by exploiting deep reinforcement
learning technique. Our framework incorporates both DQN and
network embedding methods to train superior approximation
of the o function in IM. Compared to state-of-the-art sampling-
based IM solutions, PIANO can avoid the costly diffusion
sampling phase. By training with sampled subnetworks once,
the learned model can be applied many times. Therefore, we
are able to achieve superior efficiency compared to state-
of-the-art classical solutions. Besides, the result quality in
terms of influence spread of PIANO is the same or better than
the competitors. As the seminal effort towards the paradigm
of learning-based IM solution, PIANO demonstrates exciting
performance in terms of result quality and running time. We
believe that our effort paves the way for a new direction to
address the challenging classical IM problem.

ACKNOWLEDGMENTS

This work is supported by National Natural Science Foun-
dation of China (No. 61972309), XD-Inspur DB Innovation
Lab grant.

REFERENCES

[1] D. Kempe, J. M. Kleinberg, and E. Tardos, “Maximizing the spread of
influence through a social network,” in KDD, 2003, pp. 137-146.

[2] Y. Tang, Y. Shi, and X. Xiao, “Influence maximization in near-linear
time: A martingale approach,” in SIGMOD, 2015, pp. 1539-1554.

[3] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, p. 529, 2015.

[4] H. Dai, B. Dai, and L. Song, “Discriminative embeddings of latent
variable models for structured data,” in ICML, 2016, pp. 2702-2711.

[5] H. T. Nguyen, M. T. Thai, and T. N. Dinh, “Stop-and-stare: Optimal
sampling algorithms for viral marketing in billion-scale networks,” in
SIGMOD, 2016, pp. 695-710.

[6] J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, J. M. VanBriesen,
and N. S. Glance, “Cost-effective outbreak detection in networks,” in
KDD, 2007, pp. 420—429.

[71 Y. Tang, X. Xiao, and Y. Shi, “Influence maximization: near-optimal
time complexity meets practical efficiency,” in SIGMOD, 2014, pp. 75—
86.

[8] W. Chen, Y. Wang, and S. Yang, “Efficient influence maximization in
social networks,” in KDD, 2009, pp. 199-208.

[91 Q. Jiang, G. Song, G. Cong, Y. Wang, W. Si, and K. Xie, “Simulated
annealing based influence maximization in social networks,” in AAAI,
2011.

[10] A. Goyal, W. Lu, and L. V. S. Lakshmanan, “SIMPATH: an efficient
algorithm for influence maximization under the linear threshold model,”
in ICDM, 2011, pp. 211-220.

[11] A. Arora, S. Galhotra, and S. Ranu, “Debunking the myths of influence
maximization: An in-depth benchmarking study,” in SIGMOD, 2017, pp.
651-666.

[12] C. Borgs, M. Brautbar, J. T. Chayes, and B. Lucier, “Maximizing social
influence in nearly optimal time,” in SODA, 2014, pp. 946-957.

[13] K. Huang, S. Wang, G. S. Bevilacqua, X. Xiao, and L. V. S. Laksh-
manan, “Revisiting the stop-and-stare algorithms for influence maxi-
mization,” PVLDB, vol. 10, no. 9, pp. 913-924, 2017.

[14] K. Ali, C. Wang, and Y. Chen, “Boosting reinforcement learning in
competitive influence maximization with transfer learning,” in W1, 2018,
pp- 395-400.

[15] S. Lin, S. Lin, and M. Chen, “A learning-based framework to handle
multi-round multi-party influence maximization on social networks,” in
KDD, 2015, pp. 695-704.

[16] H. Huang, Z. Meng, and S. Liang, “Recurrent neural variational model
for follower-based influence maximization,” Inf. Sci., vol. 528, pp. 280—
293, 2020.

[17] K. Ali, C. Wang, M. Yeh, and Y. Chen, “Addressing competitive
influence maximization on unknown social network with deep reinforce-
ment learning,” in IEEE/ACM International Conference on Advances
in Social Networks Analysis and Mining, ASONAM 2020, The Hague,
Netherlands, December 7-10, 2020, M. Atzmiiller, M. Coscia, and
R. Missaoui, Eds. IEEE, 2020, pp. 196-203.

[18] T. Carnes, C. Nagarajan, S. M. Wild, and A. van Zuylen, “Maximizing
influence in a competitive social network: a follower’s perspective,” in
EC, 2007, pp. 351-360.

[19] H. Li, S. S. Bhowmick, J. Cui, Y. Gao, and J. Ma, “Getreal: Towards
realistic selection of influence maximization strategies in competitive
networks,” in SIGMOD, 2015, pp. 1525-1537.

[20] S. Tian, S. Mo, L. Wang, and Z. Peng, “Deep reinforcement learning-
based approach to tackle topic-aware influence maximization,” Data Sci.
Eng., vol. 5, no. 1, pp. 1-11, 2020.

[21] S. Vaswani, B. Kveton, Z. Wen, M. Ghavamzadeh, L. V. S. Lakshmanan,
and M. Schmidt, “Model-independent online learning for influence
maximization,” in ICML, 2017, pp. 3530-3539.

[22] T. Cao, X. Wu, X. T. Hu, and S. Wang, “Active learning of model
parameters for influence maximization,” in PKDD, 2011, pp. 280-295.

JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

(23]

[24]

[25]

[26]

[27])
[28]

[29]

[30]
(311

[32]

(33]
[34]
[35]

(36]

(371

(38]
[39]
[40]

[41]

[42]
[43]
[44]

[45]

X. Tong, H. Fan, X. Wang, J. Li, and X. Wang, “Seeds selection for
influence maximization based on device-to-device social knowledge by
reinforcement learning,” in KSEM. Springer, 2020, pp. 155-167.

H. Kamarthi, P. Vijayan, B. Wilder, B. Ravindran, and M. Tambe,
“Influence maximization in unknown social networks: Learning policies
for effective graph sampling,” in AAMAS, 2020, pp. 575-583.

M. M. Keikha, M. Rahgozar, M. Asadpour, and M. F. Abdollahi,
“Influence maximization across heterogeneous interconnected networks
based on deep learning,” Expert Systems with Applications, vol. 140, pp.
1-11, 2020.

S. Manchanda, A. Mittal, A. Dhawan, S. Medya, S. Ranu, and A. K.
Singh, “GCOMB: learning budget-constrained combinatorial algorithms
over billion-sized graphs,” in NeurIPS, 2020.

M. Belkin and P. Niyogi, “Laplacian eigenmaps and spectral techniques
for embedding and clustering,” in NIPS, 2002, pp. 585-591.

B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning of
social representations,” in KDD. ACM, 2014, pp. 701-710.

S. Abu-El-Haija, B. Perozzi, R. Al-Rfou, and A. Alemi, “Watch
your step: Learning graph embeddings through attention,” CoRR, vol.
abs/1710.09599, 2017.

A. Grover and J. Leskovec, “node2vec: Scalable feature learning for
networks,” in KDD. ACM, 2016, pp. 855-864.

D. Wang, P. Cui, and W. Zhu, “Structural deep network embedding,” in
KDD, 2016, pp. 1225-1234.

N. Shervashidze, P. Schweitzer, E. J. v. Leeuwen, K. Mehlhorn, and
K. M. Borgwardt, “Weisfeiler-lehman graph kernels,” Journal of Ma-
chine Learning Research, vol. 12, no. Sep, pp. 2539-2561, 2011.

J. Qiu, J. Tang, H. Ma, Y. Dong, K. Wang, and J. Tang, “Deepinf: Social
influence prediction with deep learning,” in KDD, 2018, pp. 2110-2119.
D. Kempe, J. M. Kleinberg, and E. Tardos, “Influential nodes in a
diffusion model for social networks,” in ICALP, 2005, pp. 1127-1138.
R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction,
2nd ed. The MIT Press, 2018.

V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-
stra, and M. A. Riedmiller, “Playing atari with deep reinforcement
learning,” CoRR, vol. abs/1312.5602, 2013.

H. Li, M. Xu, S. S. Bhowmick, C. Sun, Z. Jiang, and J. Cui, “DISCO:
influence maximization meets network embedding and deep learning,”
CoRR, vol. abs/1906.07378, 2019.

N. K. Ahmed, J. Neville, and R. R. Kompella, “Network sampling: From
static to streaming graphs,” TKDD, vol. 8, no. 2, pp. 7:1-7:56, 2013.
J. Leskovec and C. Faloutsos, “Sampling from large graphs,” in KDD,
2006, pp. 631-636.

C. Doerr and N. Blenn, “Metric convergence in social network sam-
pling,” in HotPlanet@SIGCOMM, 2013, pp. 45-50.

C. Lee, X. Xu, and D. Y. Eun, “Beyond random walk and metropolis-
hastings samplers: why you should not backtrack for unbiased graph
sampling,” in SIGMETRICS. ACM, 2012, pp. 319-330.

L. A. Goodman, “Snowball Sampling,” The Annals of Mathematical
Statistics, vol. 32, no. 1, pp. 148-170, 1961.

R. Kumar, J. Novak, and A. Tomkins, “Structure and evolution of online
social networks,” in KDD, 2006, pp. 611-617.

L. Sun, W. Huang, P. S. Yu, and W. Chen, “Multi-round influence
maximization,” in KDD, 2018, pp. 2249-2258.

K. Han, K. Huang, X. Xiao, J. Tang, A. Sun, and X. Tang, “Efficient
algorithms for adaptive influence maximization,” PVLDB, vol. 11, no. 9,
pp- 1029-1040, 2018.

Hui Li Hui Li is currently a professor with the
School of Computer Science and Technology, Xidian
University, China. His research interests include data
mining, database, and privacy-preserving query. He
has published many papers in major venues in these
areas such as SIGMOD, VLDB, ICDE, SIGKDD,
the IEEE Transactions on Knowledge and Data
Engineering, and the VLDB Journal.

dimensional indexing.

Mengting Xu Mengting Xu is a master student with
the School of Cyber Engineering, Xidian University,
China. Her research interests include social network
mining.

Sourav S Bhowmick Sourav S Bhowmick is an
associate professor with the School of Computer
Science and Engineering, Nanyang Technological
University. His current research interests include
data management, data analytics, computational so-
cial science, and computational systems biology. He
has published many papers in major venues in these
areas such as SIGMOD, VLDB, ICDE, SIGKDD,
MM, the IEEE Transactions on Knowledge and Data
Engineering, the VLDB Journal, and the Bioinfor-
matics.

Joty Shafiq Rayhan Joty Shafiq Rayhan is an
associate professor with the School of Computer
Science and Engineering, Nanyang Technological
University. His current research interests include
natural language processing, and machine learning
systems. He has published many papers in major
venues in these areas such as ACL, ICML, NeurIPS,
SIGMOD, AAAI, and ICLR.

Changsheng Sun Changsheng Sun is currently a
PhD student with the School of Computing, National
University of Singapore. His current research inter-
ests include trustworthy machine learning. He has
published several papers in NeurIPS, ICSE.

Jiangtao Cui Jiangtao Cui received the MS and PhD
degrees in computer science from Xidian Univer-
sity, Xi’an, China, in 2001 and 2005, respectively.
Between 2007 and 2008, he has been with the
Data and Knowledge Engineering group working
on high-dimensional indexing for large scale image
retrieval, in the University of Queensland, Australia.
He is currently a professor with the School of Com-
puter Science and Technology, Xidian University,
China. His current research interests include data
and knowledge engineering, data security, and high-

