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ABSTRACT
Vector representation of sentences is important for many text pro-
cessing tasks that involve classifying, clustering, or ranking sen-
tences. For solving these tasks, bag-of-word based representation
has been used for a long time. In recent years, distributed represen-
tation of sentences learned by neural models from unlabeled data
has been shown to outperform traditional bag-of-words represen-
tations. However, most existing methods belonging to the neural
models consider only the content of a sentence, and disregard its
relations with other sentences in the context. In this paper, we �rst
characterize two types of contexts depending on their scope and
utility. We then propose two approaches to incorporate contextual
information into content-based models. We evaluate our sentence
representation models in a setup, where context is available to in-
fer sentence vectors. Experimental results demonstrate that our
proposed models outshine existing models on three fundamental
tasks, such as, classifying, clustering, and ranking sentences.

CCS CONCEPTS
•Computing methodologies ! Learning latent representa-
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KEYWORDS
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1 INTRODUCTION AND MOTIVATION
Many sentence-level text processing tasks rely on representing
the sentences using �xed-length vectors. For example, classifying
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sentences into topics using a statistical classi�er like Maximum En-
tropy requires the sentences to be represented by vectors. Similarly,
for the task of ranking sentences based on their importance in the
text using a ranking model like LexRank [5] or SVMRank [10], one
needs to �rst represent the sentences with �xed-length vectors. �e
most common approach uses a bag-of-words or a bag-of-ngrams
representation, where each dimension of the vector is computed
by some form of term frequency statistics (e.g., tf*idf ).

Recently, distributed representations, in the form of dense real-
valued vectors, learned by neural network models from unlabeled
data, has been shown to outperform traditional bag-of-words rep-
resentation [14]. Distributed representations encode the semantics
of linguistic units and yield be�er generalization [3, 19]. How-
ever, most existing methods to devise distributed representation for
sentences consider only the content of a sentence, and disregard
relations between sentences in a text by and large [8, 14]. But,
sentences rarely stand on their own in a well-formed text. On a
�ner level, sentences are connected with each other by certain
logical relations (e.g., elaboration, contrast) to express the meaning
as a whole [9]. On a coarser level, sentences in a text address a
common topic, o�en covering multiple subtopics; i.e., sentences
are also topically related [31]. Our main hypothesis in this paper is
that distributed representation methods for sentences should not
only consider the content of the sentence but also the contextual
information in the text.

Recent studies [6, 35, 37] on learning distributed representations
for words have shown that semantic relations between words (e.g.,
synonymy, hypernymy, hyponymy) encoded in semantic lexicons
like WordNet [21] or Framenet [2] can improve the quality of word
vectors that are trained solely on unlabeled data [6, 35, 37]. Our
work in this paper is reminiscent of this line of research with a
couple of crucial di�erences. Firstly, we are interested in repre-
sentation of sentences as opposed to words, for the former such
resources are not readily available. Secondly, our main goal is to
incorporate extra-sentential context in some form of inter-sentence
relations as opposed to semantic relations between words. �ese
di�erences posit a number of new research challenges: (i) how
can we obtain extra-sentential context that can capture semantic
relations between sentences? (ii) how can we e�ectively exploit the
inter-sentence relations in our representation learning model? and



�nally, (iii) how can we evaluate the quality of the vectors learned
by our model?

To tackle the �rst issue, we explore two di�erent methods to
obtain extra-sentential context. In our �rst method, we consider
the adjoining sentences of a sentence in a text as the context. We
call this discourse context since it captures the actual order of the
sentences. In our second method, we build a similarity network of
sentences, and consider adjacent nodes (i.e., one-hop neighbors)
of a sentence as its context. We call this similarity context since it
is based on a direct measure of similarity. Our choice of network
to encode context is due to the fact that networks provide �exible
ways to represent relations between any pair of sentences [5, 17].

We address the second challenge by proposing two di�erent ap-
proaches to exploit the context information. In our �rst approach,
we �rst learn sentence vectors using an existing content-based
model, Sen2Vec [14]. �en, we re�ne these vectors to encour-
age the new estimated vectors to be similar to the vectors of its
neighbors and similar to their prior Sen2Vec representations. �e
re�nement is performed by using an e�cient iterative algorithm
[6, 32]. We call this model retro��ed model since it retro�ts the ini-
tially learned Sen2Vec vectors using contextual information. In our
second approach, we alter the objective function of Sen2Vec with
a regularizer or prior that encourages neighboring sentences to
have similar vector representations. We call this regularized model.
In this approach, the vectors are learned from scratch by jointly
modeling the content of the sentences and the relation between
sentences.

Several recent methods also exploit contextual information to
learn sentence vectors, e.g., FastSent [8] and Skip-�ought [12].
�ese methods learn sentence representations by predicting content
(words or word sequences) of adjoining sentences. By learning
representations that can predict contents of adjacent sentences,
these methods may learn semantic and syntactic properties that are
more speci�c to the neighbors rather than the sentence under con-
sideration. Furthermore, these methods either make simple BOW
(bag of words) assumption or disregard context when extracting a
sentence vector. By contrast, our models learn sentence representa-
tions directly, and they treat adjacent sentences as atomic linguistic
units.

Di�erent approaches to evaluate sentence representation meth-
ods have been proposed in the past including sentence-level pre-
diction tasks (e.g., sentiment classi�cation, paraphrase identi�ca-
tion) and sentence-pair similarity computation task [8, 14]. �ese
approaches evaluate sentences independently out of context. In-
stead, in this paper, we propose an evaluation setup, where extra-
sentential context is available to infer sentence vectors. We evaluate
our models on three di�erent types of tasks: classi�cation, cluster-
ing and ranking. In particular, we consider the tasks of classifying
and clustering sentences into topics, and of ranking sentences in a
document to create an extractive summary of the document (i.e.,
by selecting the top-ranked sentences). �ere are standard datasets
with document-level topic annotations (e.g., Reuters-21578, 20 News-
groups). However, to our knowledge, no dataset exists with topic
annotations at the sentence level. We generate sentence-level topic
annotations from the document-level ones by selecting subsets of
sentences that can be considered as representatives of the document
and label them with the same document-level topic label. We use
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Figure 1: Distributed memory (DM) and Distributed bag of
words (DBOW) versions of Sen2Vec.

the standard DUC 2001 and 2002 datasets to evaluate our models on
the summarization task, where we compare the system-generated
summaries with the human-authored summaries.

Our evaluation on these tasks across multiple datasets shows
impressive results for our model, which outperforms the best exist-
ing models by up to 6.29 F1-score in classi�cation, 12.78 V -score
in clustering, 2.90 ROUGE-1 score in summarization. We found
that the discourse context perform be�er on topic classi�cation
and clustering tasks, and similarity context performs be�er on sum-
marization. We have implemented all our proposed models in a
�exible so�ware stack, which enables e�ective evaluation of exist-
ing or future sentence representation learning models. We make
our code1 publicly available.

�e rest of the paper is organized as follows. In Section 2, we
present a content-only model followed by two extensions of this
model, which incorporate contextual information. In Sections 3,
4 and 5, we discuss experimental se�ings and results. Section 6
gives an account on related work, and �nally, we conclude with a
discussion of future work in Section 7.

2 METHODOLOGY
Let � : V ! Rd be the mapping function from sentences to their
distributed representations, i.e., real-valued vectors ofd dimensions.
Equivalently, � can be thought of as a look-up matrix of size |V |⇥d ,
where |V | is the total number of sentences. Our goal is to learn � by
exploiting information from two di�erent sources: (i) the content of
the sentence, v = (�1,�2 · · ·�m ); and (ii) the context of the sentence,
N (v). In the following subsections, we �rst describe an existing
model that considers only the content of a sentence (Subsection 2.1).
We then formalize types of extra-sentential context (Subsection 2.2).
Finally, we present our models that extend the content-based model
to incorporate contextual information (Subsections 2.3 – 2.4).

2.1 Content-based Model: Sen2Vec
Le and Mikolov [14] proposed two log-linear models for learning
vector representation of sentences: (a) a distributed memory (DM)
model, and (b) a distributed bag of words (DBOW) model. As
shown in Figure 1, both models are trained solely based on the
content of the sentences. In the DM model, every sentence in
1h�ps://github.com/tksaha/con-s2v/tree/jointlearning

https://github.com/tksaha/con-s2v/tree/jointlearning


V is represented by a d dimensional vector in a shared lookup
matrix � 2 R |V |⇥d . Similarly, every word in the vocabulary D is
represented by a d dimensional vector in another shared lookup
matrix � 2 R |D |⇥d . Given an input sentence v = (�1,�2 · · ·�m ),
the corresponding sentence vector from � and the corresponding
word vectors from � are averaged to predict the next word in a
context. More formally, the DM model minimizes the following
loss (negative log likelihood):

Lc (v) =

m�k’
t=k
� log P(�t |v;�t�k+1, · · · ,�t�1)

=

m�k’
t=k
� log exp(�(�t )T z)Õ

�i 2D exp(�(�i )T z)
(1)

where z is the average of �(v),� (�t�k+1), · · · ,� (�t�1) input vec-
tors, and �(�t ) is the output vector representation of word �t . �e
sentence vector �(v) is shared across all (sliding window) contexts
extracted from the same sentence, thus acts as a distributed memory.
Instead of predicting the next word in the context, the DBOWmodel
predicts the words in the context independently given the sentence
id as input. More formally, DBOW minimizes the following loss:

Lc (v) =

m�k’
t=k

t’
j=t�k+1

� log P(�j |v)

=

m�k’
t=k

t’
j=t�k+1

� log
exp(�(�j )T�(v))Õ

�i 2D exp(�(�i )T�(v))
(2)

Training of the models is typically performed using gradient-
based online methods, such as stochastic gradient descend (SGD).
Unfortunately, this could be impractically slow on large corpora
due to summation over all vocabulary items D in the denominator
(Equations 1 and 2), which needs to be performed for every training
instance (v,�j ). To address this, Mikolov et. al [19] use negative
sampling, which samples negative examples to approximate the
summation term. For instance, for each training instance (v,�j ) in
Equation 2, we add S negative examples {(v,�sj )}

S
s=1 by sampling

�

s
j from a known noise distribution µ (e.g., unigram, uniform). �e

log probability is then formulated as such to discriminate a positive
instance �j from a negative one �sj .

log P(�j |v) = log�
⇣
�(�j )T�(v)

⌘
+log

S’
s=1
E�sj ⇠µ �

⇣
��(�sj )

T
�(v)

⌘
(3)

where � is the sigmoid function de�ned as � (x) = 1/(1 + e

�x ).
�e loss in Equation 3 can be optimized e�ciently as S is a small
number (5 – 10) compared to the vocabulary size |D | (26K – 139K).

Both DM and DBOW models a�empt to capture the overall
semantics of a sentence by looking at its content words. However,
sentences in a well-formed text are rarely independent, rather the
meaning of one sentence depends on themeaning of other sentences
in its context. For instance, consider the sentences in Figure 2(a),
which are taken from the science.space category of the Newsgroups
dataset. Here, the paragraph is talking about shu�le’s reusability for

the missions in space. If we consider the sentences independently,
it is very hard to understand the topic. Sentence, u is talking about
shu�le, v is raising concern about its reusability and sentence y
is elaborating on v to convey the concern more straightforwardly.
When the sentences are considered together, it becomes easier to
interpret. �is suggests that representation learning models should
also consider extra-sentential context to learn be�er representations
for sentences.

2.2 Context Types
We distinguish between two types of context: discourse context
and similarity context, as we elaborate on them below.

Discourse Context: Sentences in a text segment (e.g., paragraph)
are semantically related by certain coherence relations (e.g., elabora-
tion, contrast), and they address a common topic [31]. �is indicates
that adjacent sentences of a particular sentence is essential to be�er
understand the meaning of the sentence. �e discourse context of a
sentence is comprised by its previous and the following sentences
in a text.
Similarity Context: While the sequential order of the sentences
carries important information, sentences that are far apart in the
temporal order can also be related. In an empirical evaluation of
data structures for representing discourse coherence, [34] advocates
for a graph representation of discourse allowing non-adjacent con-
nections. Moreover, graph-based methods for topic segmentation
[17] and summarization [5] rely on complete graphs of sentences,
where edge weights represent cosine similarity between sentences.
�erefore, we consider a context type that is based on a direct
measure of similarity, and considers relations between all possible
sentences in a document and possibly across multiple documents.

Our similarity context allows any other sentence in the corpus
to be in the context of a sentence depending on how similar they
are. To measure the similarity, we �rst represent the sentences
with vectors learned by Sen2Vec [14], then we measure the cosine
distance between the vectors. We restrict the context size of a
sentence for computational e�ciency, while still ensuring that it
is informative enough. We achieve this by imposing two kinds of
constraints. First, we set thresholds for intra- and across-document
connections: sentences in a document are connected only if their
similarity value is above a pre-speci�ed threshold � , and sentences
across documents are connected only if their similarity value is
above another pre-speci�ed threshold � . Second, we allow up to 20
most similar neighbors. We call the resulting network similarity
network. Equation 4 formalizes the similarity network construction
strategy explained above.

(u, v) =
8>>><
>>>:

1, i f � (u, v)  � | u 2 D` , v 2 Dm , ` =m, v 2 top20
1, i f � (u, v)  � | u 2 D` , v 2 Dm , ` ,m, v 2 top20
0, otherwise

(4)
where Dl and Dm refer to l-th andm-th documents in the corpus,
respectively. In the following two subsections, we present two
di�erent methods to incorporate context (discourse or similarity)
for learning vector representation of sentences.
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Figure 2: (c) presents an instance of our regularized model for learning representation of sentence v in comparison to (b)
Sen2Vec (DBOW) model within a context of two other sentences: u and y in (a). Directed and undirected edges indicate predic-
tion loss and regularization loss, respectively. (Collected from:newsgroup/20news-bydate-train/sci.space/61019. �e central
topic is “science.space”.)

Algorithm 1: Jacobi method for retro��ing.
Input :

- Graph G = (V ,E)
- Prior vectors � 0
- Probabilities �v and �v,u

Output :Retro��ed vectors �
�  �

0
// initialization

repeat
for all v 2 V do

�(v) �v�0(v)+
Õ

u �v,u�(u)
�v+

Õ
u �v,u

end
until convergence;

2.3 Retro�tted Models: R��-dis, R��-sim
We explore the general idea of retro��ing [6] to incorporate in-
formation from both the content and context of a node (sentence)
in a joint learning framework. Let � 0(v) denote the vector rep-
resentation for sentence v that has already been learned by our
content-based model (Sen2Vec) in Section 2.1. Our aim is to retro�t
this vector using either discourse context or similarity context such
that the revised vector �(v): (i) is similar to the prior vector � 0(v),
and (ii) is also similar to the vectors of its adjoining sentences (dis-
course context) or its adjacent nodes (similarity context). To this
end, we de�ne the following objective function to minimize:

� (�) =
’
v2V

�� | |�(v) � � 0(v)| |2 +
’

(v,u)2E
�u,� | |�(u) � �(v)| |2 (5)

where � values control the strength to which the algorithm should
match the prior vectors, and � values control the degree of smooth-
ness based on the graph similarity. �e quadratic cost in Equation
5 is convex in �, and has a closed form solution [32]. �e closed
form expression requires an inversion operation, which could be
expensive for big graphs. A more e�cient way is to use the Jacobi

method, an online algorithm to solve the Equation iteratively. �e
Jacobi method leads to following update rule:

�(v) �v� 0(v) +
Õ
u �v,u�(u)

�v +
Õ
u �v,u

(6)

In our case, we set �v = 1, and �v,u =
1

de�r ee(v) , i.e. we give
higher weights to vectors learned from Sen2Vec than to its con-
textual counterpart. Similar se�ings have been used in [6]. In
Algorithm 1, we formally describe the training procedure of our
retro��ed model. We use the DBOW model to learn the prior vec-
tors � 0. We name the model that consider discourse context as
R��-dis and the model considering similarity context as R��-sim.

2.4 Regularized Models: R��-dis, R��-sim
Rather than retro��ing the vectors learned from a content-based
model using context as a post-processing step, we can incorporate
neighborhood information directly into the objective function of the
content-based model as a regularizer, and learn the sentence vectors
in a single step. We de�ne the following objective to minimize:

� (�) =
’
v2V

h
Lc (v) + �Lr (v,N (v))

i
(7)

=
’
v2V

h
Lc (v) + �

’
(v,u)2E

| |�(u) � �(v)| |2
i

(8)

where the �rst component Lc (v) refers to the loss of the content-
based model described in Section 2.1. �e second component
Lr (v,N (v)) is a Laplacian regularizer with � being the regular-
ization strength. �e regularizer brings the vector representation of
a sentence closer to its context. Depending on the context type, this
leads to di�erent objectives. �e model that uses discourse context
(call this R��-dis) trains the vectors to be closer to the adjacent
sentences in a text. Similarly, the model with similarity context
(call this R��-sim) trains the vectors to be closer to its neighbors in



Algorithm 2: Training REG with SGD
Input : set of sentences V , graph G = (V ,E), window size k
Output : learned sentence vectors �
1. Initialize model parameters: �,� and �’s;
2. Compute noise distribution: µ
3. repeat

for each sentence v 2 V do
for each content word � 2 v do

// for word vectors

for each word �i around � for window k do
(a) Generate a positive pair (�i ,�) and S negative

pairs {(�i ,�s )}Ss=1 using µ;
(b) Take a gradient step for Lc (�i ,�)

end
// for sentence vectors

(c) Generate a positive pair (v,�) and S negative
pairs {(v,�s )}Ss=1 using µ;
(d) Take a gradient step for Lc (v,�);
(e) Take a gradient step for Lr (v,N (v));

end
end

until convergence;

the similarity network. As in the retro��ed models, we use DBOW
as our content-based model.

Since the regularized models learn the vectors from scratch in
one shot by considering information from both sources, the two
components can be be�er adjusted to produce be�er quality vectors.
Figure 2 (c) shows one instance of our model with discourse context
(u and y are the adjoining sentences of sentence v). Algorithm 2
formally describes the training procedure for the regularizedmodels.
First, we initialize the model parameters: �,� and �, and compute
the unigram distribution over words as our noise distribution µ. In
each epoch of SGD (Line 3), we iterate over the sentences, and take
one gradient step to learn word embeddings (Step b) and take two
gradient steps (Steps d and e) to learn sentence embeddings: one
for the content prediction loss, and the other for the regularization
loss.

3 EVALUATION METHOD: TASKS, DATASETS
AND METRICS

We evaluate our representation learning models on three di�erent
tasks that involve classi�cation, clustering, and ranking sentences.
�ese are the three fundamental information system tasks, and
good performance over these tasks will indicate the robustness of
our models in a wide range of downstream applications.

For classi�cation (or clustering), we measure how e�ective the
learned vectors are when they are used for classifying (or cluster-
ing) sentences based on their topics. Text categorization is now
a standard task for evaluating cross-lingual word embeddings [7].
For ranking, we evaluate how e�ective the vectors are when they
are used to rank sentences for generating an extractive summary
[22] of a document.

Table 1: Basic Statistics of the DUC Datasets

Dataset # Doc. # Sen. (Avg) # Sum. (Avg)

DUC 2001 486 40 2.17
DUC 2002 471 28 2.04

As our representation learning models exploit inter-sentence
relations,2 which can possibly be constrained by document bound-
aries (e.g., similarity context), therefore, for topic classi�cation and
clustering, we require datasets containing documents with sentence-
level annotations. However, to the best of our knowledge, no dataset
exists with topic annotations at the sentence level. We generate
sentence-level topic annotations from the document-level ones by
selecting subsets of sentences that can be considered as representa-
tives of the document using an extractive summarization tool, and
label the selected sentences with the same document-level topic. In
both of our tasks, extractive summarization is a key component,
therefore in the following, we �rst describe the summarization task.

3.1 Extractive Summarization (Ranking) Task
�e Extractive Summarizer: Extractive summarization is o�en
considered as a ranking problem with the goal to select the most
important sentences to form a compressed version of the source
document. Unsupervised methods are the predominant paradigm
for determining sentence importance [22]. We use popular graph-
based algorithm LexRank [5] for this purpose. To get the summary
sentences of a document, we �rst build a weighted graph, where
nodes represent the sentences of a document and edge weights
represent cosine similarity between learned vector space represen-
tations (using any vector space representation models of our choice)
of the two corresponding sentences. To make the graph sparse, we
avoid edges with weight less than 0.10. We then run the PageRank
algorithm [24] on the graph to determine the rank of each sentence
in a document, and thereby extract the key sentences as summary
of that document. �e dumping factor in PageRank was set to 0.85.

Datasets: We use the benchmark datasets from DUC 2001 and
2002, where the task3 is to generate a 100-words summary for each
document in the datasets. Table 1 shows some basic statistics about
the datasets. DUC-2001 and DUC-2002 has 486 and 471 documents
respectively. �e average number of sentences per document is
40 and 28, respectively. For each document, 2-3 short reference
(human authored) summaries are available, which we use as gold
summaries in our evaluation. �e human authored summaries are
of approximately 100 words. On average, the datasets have 2.17
and 2.04 human authored summaries per document, respectively.
�e sentence representations are learned independently a priori
from the same source documents.

Metrics: We use the widely used automatic evaluation metric
ROUGE [15] to evaluate the system-generated summaries. ROUGE
is a recall oriented metric that computes n-gram recall between a
2For this reason, we did not evaluate our models on tasks previously used to evaluate
sentence representation models.
3h�p://www-nlpir.nist.gov/projects/duc/guidelines



Table 2: Statistics about Reuters and Newsgroups.

Dataset #Doc. Total Annot. Train Test #Class
#sen. #sen #sen. #sen.

Reuters 9,001 42,192 13,305 7,738 3,618 8
Newsgroups 7,781 95,809 22,374 10,594 9,075 8

candidate summary and a set of reference (human authored) sum-
maries. Among the variants, ROUGE-1 (i.e., n = 1) has been shown
to correlate well with human judgments for short summaries [15].
�erefore, we only report ROUGE-1 in this paper. �e con�gura-
tion for ROUGE in our case is: -c 99 -2 -1 -r 1000 -w 1.2 -n 4 -m
-s -a -l 100. Depending on the task at hand, ROUGE collects the
�rst 100 words from the summary a�er removing the stop words
to compare with the corresponding reference summaries.

3.2 Topic Classi�cation and Clustering Tasks
Classi�cation and Clustering Tools: We train a maximum en-
tropy (MaxEnt) classi�er using the vectors learned from the models
with no additional �ne-tuning for evaluation. Following [13], we
restrict ourselves to linear classi�er. �e two main reasons are: (i) it
makes reproducing results of experiments straight-forward, and
(ii) it allows us to be�er analyze the quality of the learned vector
representation. For clustering, we use k-means++ [1] algorithm
for producing the clusters given the vector representation from the
models. One can use non-linear classi�ers (e.g., neural networks)
or spectral clustering algorithms [23, 33] to achieve additional per-
formance gain, but it is not the goal of our paper.
Datasets: We use 20-Newsgroups and Reuters-21578 datasets for
the classi�cation and clustering tasks. �ese datasets are publicly
available and widely used for text categorization tasks.
20Newsgroups: �is dataset is a collection of approximately 20, 000
news documents4. �e documents are organized into 20 di�erent
topics. Some of these topics are closely related (e.g., talk.politics.guns
and talk.politics.mideast), while others are diverse in nature (e.g.,
misc.forsale and soc.religion.christian). We selected 8 diverse top-
ics in our experiments from the 20 topics. �e selected topics are:
talk.politics.mideast, comp.graphics, soc.religion.christian, rec.autos,
sci.space, talk.politics.guns, rec.sport.baseball, and sci.med.
Reuters-21578: Reuters Newswire5 has 21578 documents covering
672 topics. We use “ModApte” train-test split and selected docu-
ments only from the most 8 frequent topics. �e selected topics are:
acq, crude, earn, grain, interest, money-fx, ship, and trade.
Generating Sentence-level Topic Annotations: As discussed
earlier, for our evaluation on topic classi�cation and clustering
tasks, we have to create topic annotations at the sentence-level
from the document-level topic labels. One option is to assume
that all the sentences from a document have the same topic label
as the document. However, this naive assumption propagates a
lot of noises. Although sentences in a document collectively ad-
dress a common topic, not all sentences are directly linked to that
topic, rather some of them play supporting roles. To minimize this
noise, we use the extractive (unsupervised) summarizer described

4h�p://qwone.com/ jason/20Newsgroups/
5h�p://kdd.ics.uci.edu/databases/reuters21578/

in Section 3.1 to select the top P% (in our case, P = 20) sentences
as representatives of the document and label them with the same
topic label as the document. We used Sen2Vec [14] representation
to compute cosine similarity between two sentences in LexRank.
Table 2 shows statistics of the resulting datasets. Note that the
sentence vectors are learned independently from an entire dataset
(Total #sen.), and the annotated part (Annot. #sen.) is used for topic
classi�cation and clustering evaluation.
Metrics: We use accuracy (Acc), Macro-averaged F1 measure (F1),
and Cohen’s Kappa (�) as evaluation metrics for comparing the
performance of various vector representation methods on topic clas-
si�cation task. For measuring topic clustering performance [27], we
use V-measure (V), and adjusted mutual information (AMI) score. V-
measure is the harmonic mean of the homogeneity and completeness
score. �e idea of homogeneity is that the topic distribution within
each cluster should be skewed to a single topic. Completeness score
determines whether all members of a given topic are assigned to
the same cluster. On the other hand, AMI measures the agreement
of two assignments, in our case the clustering and the topic dis-
tribution. It is normalized against chance. All these measures are
bounded by [0, 1]. Higher score means a be�er clustering.

4 EXPERIMENTAL SETTINGS
In this section, we brie�y discuss the models that we compare with
and the se�ings (hyperparameters, training) for our models.

4.1 Models Compared
We compare our models against a non-distributed baseline and a
number of existing distributed representation models.
Non-Distributed Baseline: We implement a TF-IDF model as
our non-distributed baseline. �e model encodes representation of
a sentence as the count of a set of word-features weighted by tf-idf.
We use all the words in the corpus as features.
Sen2Vec: We described Sen2Vec in details as a content-only model
in Section 2.1. We use Mikolov’s implementation6 of Sen2Vec as it
gave be�er results than gensim’s 7 version when validated on the
sentiment treebank [29]. Following the recommendation by [14],
we concatenate the vectors learned by DM and DBOWmodels. �e
concatenated vectors gave improvements over individual ones on
our tasks. �e vector dimensions in DM and DBOW were �xed to
300, thus the concatenation yields vectors of 600 dimensions. For
this model, we only tune the window size (k) hyper-parameter.
W2V-avg: Sen2Vec model learns word representation along with
the sentence representation. To encode a sentence using W2V-avg,
we perform an averaging operation on the vector representation
(learned from Sen2Vec) of all the words in a particular sentence.
For this model, we consider window size (k) as a tuning parameter.
C-PHRASE:C-PHRASE [26] learns vector representation of words.
It extended the CBOW model [20] to consider the hierarchical
nature of syntactic phrasing. As the implementation of this model is
not publicly available, we use pretrained word vectors from author’s
webpage.8 We �rst perform simple addition of word sequences of
a sentence for obtaining vector representation of a sentence, and

6h�ps://code.google.com/archive/p/word2vec/
7h�ps://radimrehurek.com/gensim/
8h�p://clic.cimec.unitn.it/composes/cphrase-vectors.html



Table 3: Similarity Network Statistics

Dataset # Nodes # Edges Avg. # Edges
20 Newsgroups 95809 1370149 14.03
Reuters-21578 42192 471163 11.17
DUC 2001 19549 321423 20.15
DUC 2002 13129 216492 16.49

Table 4: Optimal values of the hyper-parameters for di�er-
ent models on di�erent tasks.

Dataset Task Sen2Vec FastSent W2V-avg R��-sim R��-dis
(win. size) (win. size, reg. str.)

Reuters clas. 8 10 10 (8, 1.0) (8, 1.0)
clus. 12 8 12 (12, 0.3) (12, 1.0)

Newsgroups clas. 10 8 10 (10, 1.0) (10, 1.0)
clus. 12 12 12 (12, 1.0) (12, 1.0)

DUC 2001 rank. 10 12 12 (10, 0.8) (10, 0.5)
DUC 2002 rank. 8 8 10 (8, 0.8) (8, 0.3)

then normalize the vector. Normalized vectors performed be�er
on our tasks than the ones obtained through simple addition. �e
latent dimension of the pretrained word vectors is 300.
FastSent: FastSent [8] is an additive model that learns represen-
tation of words in a sentence by predicting words of adjacent sen-
tences. We use the autoencode version of the model, which also
predicts the words of the current sentence. In FastSent, a sentence
vector is obtained by adding the word vectors. We run the model
on our corpus to learn sentence representations of 600 dimensions,
and tune the window size (k) hyperparameter on the dev. set.
Skip-�ought: Skip-�ought [13] uses an encoder-decoder ap-
proach to reconstruct adjacent sentences of an input sentence.
Training Skip-�ought is computationally expensive [8], and it
requires a lot of data to learn an e�ective model. We use the pre-
trained combine-skipmodel9, whichwas trained on the book corpus
[38] along with vocabulary expansion. Skip-thought vectors are of
4800 dimensions.

4.2 Hyper-Parameter Tuning and Training
Details

All of our models except the retro��ed ones (i.e., R��-sim, R��-
dis) are trained with stochastic gradient descent (SGD), where the
gradient is obtained via backpropagation. We used subsampling
of frequent words in the classi�cation layer as described in [19],
which together with negative sampling give signi�cant speed-ups
in training. �e number of noise samples (S) in negative sampling
was 5. In all our models, the embeddings vectors (�,� ) were of 600
dimensions, which were initialized with random numbers sampled
from a small uniform distribution, U (�0.5/d, 0.5/d). �e weight
vectors�’s were initializedwith zero. Increasing the dimensionmay
increase performance, however, it also increases the complexity
of the model. So, we keep it 600, which is a reasonable size [8].
For R��-sim, and R��-dis, the number of iteration was set to 20

9h�ps://github.com/ryankiros/skip-thoughts

following [6]. For the similarity context, the intra- and across-
document thresholds � and � were set to 0.5 and 0.8, respectively.
Table 3 shows the basic statistics of the resultant similarity network
for all of our datasets.

For each dataset, we randomly selected 20% documents from the
whole set to form a held-out validation set on which we tune the
hyperparameters of the models. To �nd the best parameter values,
we optimize F1 for classi�cation, AMI for clustering and ROUGE-1
for summarization on the validation set. Window size (k) parameter
for our model and the baselines were tuned over {8, 10, 12 } and
the regularization strength parameter was tuned over {0.3, 0.6, 0.8,
1.0}. Table 4 shows the optimal values of each hyper-parameter
for the four datasets. We evaluate our models on the test set with
these optimal values, run each test experiment �ve times and take
the average to avoid any random behavior appearing in the results.
We observed the standard deviation to be quite low.

5 RESULTS AND DISCUSSION
We present our results on topic classi�cation and clustering in Ta-
ble 5, and results on ranking (summarization) in Table 6. �e results
in each table are shown in four groups. Sen2Vec belongs to the �rst
group. �e second group contains other existing models described
in Section 4.1. �e third group contains our retro��ed models
with discourse context (R��-dis) and similarity context (R��-sim).
Finally, the fourth group contains our regularized models, again
considering discourse (R��-dis) and similarity (R��-sim) contexts.
We report absolute value of the performance metrics for Sen2Vec,
and for other models, we present their scores relative to Sen2Vec.
In the following, we highlight the key points of our results.
Skip-�ought and FastSent perform poorly on our tasks: Un-
expectedly, FastSent and Skip-�ought perform quite poorly on
our tasks. Skip-�ought, in particular, has the worst performance
on topic classi�cation and clustering tasks. �e model gives small
improvement over Sen2Vec on ranking task in one of the datasets
(DUC’01). �ese results contradict the claim made by [13] that
skip-thought vectors are generic. To investigate if the poor re-
sults are due to shi� of domains (book vs. news), we also trained
Skip-�ought on our training corpora with vector size 600 and
vocabulary size 30K . �e performance was even worse. We hy-
pothesize, this is due to our training set size, which may not be
enough for the heavy model. Another reason could be that Skip-
�ought does not perform any inference to extract the vector using
a context – although the model was trained to generate neighbor-
ing sentences, context was ignored when the encoder was used to
extract the sentence vector. Also, by learning representations to
predict contents of adjacent sentences, the learned vectors might
capture linguistic properties that are more speci�c to the neighbors
than the current sentence. Similar justi�cation holds for FastSent,
which performed quite poorly in �ve out of six se�ings (Tasks
+ Datasets combinations). Furthermore, FastSent does not learn
sentence representation directly, rather it adds word vectors to get
sentence representations.
Existing distributed methods show promising results: Apart
from Skip-�ought and FastSent, other existing distributed models
show promising results. As Table 5 shows, Sen2Vec outperforms
TF-IDF representation by a good margin on both classi�cation and



Table 5: Performance of our models on topic classi�cation and clustering tasks in comparison to Sen2Vec.

Topic Classi�cation Results Topic Clustering Results

Reuters Newsgroups Reuters Newsgroups
F1 Acc � F1 Acc � V AMI V AMI

Sen2Vec 83.25 83.91 79.37 79.38 79.47 76.16 42.74 40.00 35.30 34.74

TF-IDF (�) 3.51 (�) 2.68 (�) 3.85 (�) 9.95 (�) 9.72 (�) 11.55 (�) 21.34 (�) 20.14 (�) 29.20 (�) 30.60
W2V-avg (+) 2.06 (+) 1.91 (+) 2.51 (�) 0.42 (�) 0.44 (�) 0.50 (�) 11.96 (�) 10.18 (�) 17.90 (�) 18.50
C-PHRASE (�) 2.33 (�) 2.01 (�) 2.78 (�) 2.49 (�) 2.38 (�) 2.86 (�) 11.94 (�) 10.80 (�) 1.70 (�) 1.44
FastSent (�) 0.37 (�) 0.29 (�) 0.41 (�) 12.23 (�) 12.17 (�) 14.21 (�) 15.54 (�) 13.06 (�) 34.40 (�) 34.16
Skip-�ought (�) 19.13 (�) 15.61 (�) 21.8 (�) 13.79 (�) 13.47 (�) 15.76 (�) 29.94 (�) 28.00 (�) 27.50 (�) 27.04
R��-sim (+) 0.92 (+) 1.28 (+) 1.65 (+) 2.00 (+) 1.97 (+) 2.27 (+) 3.72 (+) 3.34 (+) 5.22 (+) 5.70
R��-dis (+) 1.66 (+) 1.79 (+) 2.30 (+) 5.00 (+) 4.91 (+) 5.71 (+) 4.56 (+) 4.12 (+) 6.28 (+) 6.76

R��-sim (+) 2.53 (+) 2.53 (+) 3.28 (+) 3.31 (+) 3.29 (+) 3.81 (+) 4.76 (+) 4.40 (+) 12.78 (+) 12.18
R��-dis (+) 2.52 (+) 2.43 (+) 3.17 (+) 5.41 (+) 5.34 (+) 6.20 (+) 7.40 (+) 6.82 (+) 12.54 (+) 12.44

Table 6: ROUGE-1 scores of the models on DUC datasets in
comparison to Sen2Vec.

DUC’01 DUC’02

Sen2Vec 43.88 54.01

TF-IDF (+) 4.83 (+) 1.51
W2V-avg (�) 0.62 (+) 1.44
C-PHRASE (+) 2.52 (+) 1.68
FastSent (�) 4.15 (�) 7.53
Skip-�ought (+) 0.88 (�) 2.65
R��-sim (�) 0.62 (+) 0.42
R��-dis (+) 0.45 (�) 0.37
R��-sim (+) 2.90 (+) 2.02
R��-dis (�) 1.92 (�) 8.77

clustering tasks – up to 11.6 points on classi�cation, and up to
30.6 points on clustering. W2V-avg shows 2 points improvement
over Sen2Vec in topic classi�cation on Reuters. �e performance
of C-PHRASE and W2V-avg is close to Sen2Vec for classi�cation,
however, the models lag substantially behind on clustering. Overall,
Sen2Vec appears to be the strongest baseline for these two tasks.

In the ranking task (Table 6), Sen2Vec gets ROUGE-1 scores
of 43.88 and 54.01 on DUC’01 and DUC’02 datasets, respectively.
C-PHRASE outshines other distributed models on this task, and
provides 2.52 and 1.68 points improvements over Sen2Vec. W2V-
avg shows mixed results in summarization; it performs be�er than
Sen2Vec on one dataset and worse on the other. Surprisingly, TF-
IDF becomes the best performer on DUC’01, and gives improve-
ments of 4.15 points over Sen2Vec. Overall, the results indicate that
TF-IDF is a strong baseline for the summarization task.

Regularized andRetro�ttedmodels outperformSen2Vec: �e
retro��ing and regularized models improve over Sen2Vec on both
classi�cation and clustering tasks, showing gains of up to 6.2 points
on classi�cation and up to 12.8 points on clustering. We observe
similar pa�erns in ranking given that the model considers the right
context (ignoring the mixed results for retro��ed models). �e
improvements in most cases are signi�cant. �is demonstrates that
contextual information is bene�cial for these tasks.
Regularized models are the best performer: Our regularized
models (R��-sim, R��-dis) performs best in �ve out of six se�ings
(Dataset + Task combination). From the results presented in Table
5, we observe that regularized models are the top-performer in
topic classi�cation and clustering tasks. For topic classi�cation on
Newsgroups, our model gives around 6 points improvement over
Sen2Vec and 8 points over C-PHRASE in all the metrics (F1, Acc
and �). �e improvements are even larger for clustering – about
13 points over Sen2Vec and 15 points over C-PHRASE. Similarly,
on Reuters dataset, R��-dis gives around 3 and 7 points improve-
ments over Sen2Vec in topic classi�cation and clustering tasks,
respectively.

Regularized models also perform well on summarization task in
Table 6 – best in DUC’02 and second best in DUC’01. Given that
the existing models fail to beat the TF-IDF baseline on this task,
our results are rather encouraging.
Regularization is better than retro�tting given the right con-
text: From the third and fourth groups of results in Table 5, it is
clear that R��-dis and R��-sim are be�er models than their retro-
��ed counterparts. R��-sim also outperforms R��-sim in ranking
(Table 6) by 2 to 3 points. �e good performance comes from the
fact that regularized models consider contextual information dur-
ing training rather than in the post-processing step. �us, the
model can be�er adjust contributions from di�erent components
(prediction vs. regularization) accordingly.
Discourse context is good for topic classi�cation and clus-
tering: Discourse context perform be�er than similarity context
in most cases on classi�cation and clustering tasks. From Table
5, we notice that, R��-dis outperform R��-sim by up to 3 points



in classi�cation and by about 1 point in clustering. R��-dis and
R��-sim perform similarly on Reuters dataset for classi�cation and
on Newsgroup dataset for clustering. However, R��-dis outperform
R��-sim by a wide margin on Newsgroup dataset for classi�cation
and on Reuters dataset for clustering. �e primary reason is that
sentences appearing together in a discourse tend to address the
same (sub)topic [31]. Discourse context is cheaper to obtain as it is
readily available (consider only adjoining sentences). For obtain-
ing similarity context, we need to obtain the similarity network as
described in Section 2.2.
Similarity context is good for summarization: Similarity con-
text is more suitable than discourse context for summarization –
R��-sim is the best performer in DUC’02 dataset and the second
best in DUC’01 dataset. Similarity context is based on a direct mea-
sure of similarity, and consider relations beyond adjacency. From
a context of topically similar sentences, our model learns repre-
sentations that capture linguistic aspects related to information
centrality.
Other comments: We also experimented with Sequential Denois-
ing Autoencoder (SDAE) and Sequential Autoencoder (SAE) models
proposed in [8]. However, they performed poorly on our tasks
(thus not shown in the table). For example, SAE gave accuracies
of around 40% on reuters and 18% on newsgroups. �is is similar
to what [8] observed. �ey propose to use pretrained word embed-
dings to improve the results. We did not achieve signi�cant gains
by using pretrained embeddings on our tasks.

6 RELATEDWORK
Recently, learning distributed representation of words, phrases, and
sentences has gained a lot of a�ention due to its applicability and
superior performance over bag-of-words (BOW) features in a wide
range of text processing tasks [6, 14, 25, 35–37]. �ese models can
be categorized into two groups: (i) task-agnostic or unsupervised
models, and (ii) task-speci�c or supervised models. Task-agnostic
models learn general purpose representation from naturally occur-
ring unlabeled training data, and can capture interesting linguistic
properties [8, 11, 19]. On the other hand, task-speci�c models are
trained to solve a particular task, e.g., sentiment analysis [30], ma-
chine translation [4], and parsing [28]. Our focus in this paper is
on learning distributed representation of sentences from unlabeled
data.

�e Word2vec model [18] to learn distributed representation of
words is very popular for text processing tasks. �e model also
scales well in practice due to its simple architecture. Sen2Vec [14]
extended Word2vec [18] to learn the representation for sentences
and documents. �e model maps each sentence to an unique id
and learns the representation for the sentence using the contexts
of words in the sentence – either by predicting the whole context
independently (DBOW), or by predicting a word in the context
(DM) given the rest. In our work, we extend the DBOW model
to incorporate inter-sentence relations in the form of a discourse
context or a similarity context. We do this using a graph-smoothing
regularizer in the original objective function, or by retro��ing the
initial vectors with di�erent types of context.

In [6, 35, 37], retro��ing and regularization methods have been
explored to incorporate lexical semantic knowledge into word repre-
sentation models. Our overall idea of using external information is
reminiscent of these models with two key di�erences: (i) the seman-
tic network (WordNet, FrameNet) is given in their case, whereas we
construct the network using similarities between sentences (nodes);
(ii) we also explore discourse context that incorporate knowledge
from adjacent sentences.

Adjacent sentences have been used previously for modeling
task-agnostic representation of sentences. For example, Hill et
al. [8] proposed FastSent, which learns word representation of a
sentence by predicting words of its adjacent sentences. It derives a
sentence vector by summing up the word vectors. �e auto-encode
version of FastSent also predicts the words of the current sentence.
FastSent is fundamentally di�erent from our models as we consider
nearby sentences as atomic units, and we encode the sentence
vector directly.

Hill et al. [8] also proposed two other models, Sequential Denois-
ing Autoencoder (SDAE) and Sequential Autoencoder (SAE). SDAE
employs an encoder-decoder framework, similar to neural machine
translation (NMT) [4], to denoise an original sentence (target) from
its corrupted version (source). SAE uses the same NMT framework
to reconstruct (decode) the same source sentence. Both SAE and
SDAE compose sentence vectors sequentially, but they disregard
context of the sentence.

Another context-sensitive model is Skip-�ought [12], which
uses the NMT framework to predict adjacent sentences (target)
given a sentence (source). Since the encoder and the decoder use
recurrent layers to compose vectors sequentially, SDAE and Skip-
�ought are very slow to train. Furthermore, by learning represen-
tations to predict content of neighboring sentences, these methods
(FastSent and Skip-�ought) may learn linguistic properties that
are more speci�c to the neighbors rather than the sentence under
consideration.

In contrast, we encode a sentence directly by treating it as an
atomic unit, and we predict the words to model its content. Simi-
larly, our model incorporates contextual information by treating
neighboring sentences as atomic units. �is makes our model quite
e�cient to train and e�ective for many tasks as we have shown.

7 CONCLUSION AND FUTUREWORK
In this paper, we have proposed a set of novel models for learning
vector representation of sentences that consider not only content
of a sentence but also context of a sentence in the text. We have
explored two di�erent ways to incorporate contextual information:
(i) by retro��ing the initial vectors learned from a content-based
model using context, and (ii) by regularizing the content-based
model with a graph smoothing factor. We have also introduced two
types of context: (i) discourse context, and (ii) similarity context.

While existing evaluation methods ignore contexts, we created
an evaluation setup that allows one to infer sentence vectors using
contextual information. We evaluated our models on tasks involv-
ing classifying and clustering sentences into topics, and ranking
sentences for extractive single-document summarization. Our re-
sults across multiple datasets show impressive gains over existing
distributed models in all evaluation tasks. �e discourse context



was found to be bene�cial for topic classi�cation and clustering,
whereas the similarity context was bene�cial for summarization.

In this study, we restrict the evaluation of our models on topic
classi�cation and clustering using automatically annotated dataset.
Wewould like to explore further how ourmodels perform compared
to the existing compositional models [12, 30], where documents
with sentence-level sentiment annotation exists. Existing datasets
– IMDB [16] or Sentiment Treebank [30], are not suitable for our
purpose because in IMDB, there is no sentence-label annotation,
and in sentiment treebank, there is no contextual information. We
plan to create a dataset through manual annotation in the future.
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[3] Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Janvin. 2003.
A Neural Probabilistic Language Model. J. Mach. Learn. Res. 3 (March 2003).
h�p://dl.acm.org/citation.cfm?id=944919.944966

[4] Kyunghyun Cho, Bart van Merriënboer, Çalar Gülçehre, Dzmitry Bahdanau,
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