
Research Statement – Shafiq Joty

The Internet is a great source of human knowledge, but most of the information is hidden in unstructured texts. As a
researcher in Natural Language Processing (NLP), my goal is to add structure to this text to uncover relevant information,
and to use it in developing useful applications. To this end, my research interests span two areas of NLP: (a) developing
language analysis tools to understand human language, and (b) to build NLP applications to support end users. For (a),
I am interested in parsing texts with syntactic, semantic and discourse structures (§1). For (b), my interests lie in NLP
applications that involve not only language understanding but also generation (§3). These include large-scale language
modeling (LM), machine translation (MT), text summarization, question answering (QA) and dialogue systems. I focus
on multilingual processing, where I develop NLP models for not only English but other low-resource languages and
dialects (§2). As NLP methods are becoming more and more ubiquitous, directly impacting humanity and commerce, I
have also been looking into the security and robustness of NLP models to ensure that they do not exhibit algorithmic
bias and discriminate on the basis of factors such as gender, race, name, location or speaker (§4).1

I am also interested in interdisciplinary research that goes beyond NLP (§5). I have been collaborating with the
(i) computer vision group to develop effective multi-modal (text and image) representation learning models (§5.1),
(ii) speech group for effective speech recognition solutions (§5.4), (iii) social computing group for crisis computing
and fact checking solutions (§5.2 ), (iv) database and data mining group on solutions for more effective database
education and recommendation (§5.3), and (v) health science group to develop effective health applications (§5.5). I
have recently embarked on a joint research project on Covid-19 with Worth Health Organization (WHO) and Lee Kong
Chian (LKC) School of Medicine, where my collaborators and I are investigating machine learning models for effective
media monitoring using neural search, question answering, multi-document summarization and topic modeling. One
methodology emphasized throughout my research is to first identify the inherent semantic structures in a given problem,
and then to develop structured machine learning models to exploit such structures effectively. My work has heavily
relied on deep learning (DL) for better representation of the input text and on probabilistic graphical models (PGM)
and reinforcement learning (RL) for capturing latent dependencies in the output.

1 Language Understanding & Parsing
Natural language is ambiguous. As humans, we can easily disambiguate the meaning of linguistic units (phrases,
sentences) as we read or listen. However, for machines it is difficult to understand without explicit representations of
syntax, semantics and discourse. In my group, we develop NLP tools to parse natural language in terms of its syntax
(constituency, dependency), semantics (e.g., named entities) and discourse structures (e.g., coreference, coherence).

1.1 Syntactic Parsing (Constituency & Dependency)

Constituency and dependency are two different formalisms that represent the grammatical structure of a sentence.
Constituency (a.k.a. phrase-structure) trees organize words and phrases into nested constituents (fig. 1a), whereas words
in a dependency tree are connected directly with each other by directed links called dependencies (fig. 1b).
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(a) A binarized constituency tree for a sentence. The span and
pointing representations of the tree are shown below the tree.

(b) A dependency tree for a sentence. Head words are
connected with their modifiers by directed links. Our parser
is trained to point to the dependents given a head.

Figure 1: Constituency and dependency tree structures.

1Source code (and a few demos) of most of the research projects can be found at https://ntunlpsg.github.io/resources/.
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In recent years, neural end-to-end parsing methods have outperformed traditional methods that use grammar, lexicon
and hand-crafted features. Transition-based parsers generate trees by performing shift-reduce actions. Though
computationally attractive, the local decisions made at each step may propagate errors to subsequent steps due to
exposure bias [9]. On the other hand, globally optimal models such as Chart methods for constituency and graph-based
methods for dependency parsing, are generally slow with at least O(n3) time complexity.

Figure 2: Our syntactic parser along with the decoding process for a given
sentence. The input to the decoder at each step is the representation of the span
to be split. We predict the splitting point using a biaffine function between the
corresponding decoder state and the boundary-based encoder representations. A
label classifier is used to assign labels to the left and right spans.

In contrast to previous work, our proposed
approach [70, 89, 90] casts the parsing tasks
into a series of conditional splitting decisions
and uses a Pointer network [113] to model
the splitting decision as pointing to the split
points (fig. 1a) at each decoding step (fig. 2).
The conditional probabilities of the splitting
decisions are optimized using a cross entropy
loss and structural consistency is maintained
through a global pointing mechanism. The
training process is fully parallelized without
requiring expensive structured inference like
previous methods. Our model enables ef-
ficient top-down decoding with O(n) run-
ning time like transition-based parsers, while
also supporting a customized beam search to
get the best tree by searching through a rea-
sonable search space of high scoring trees.
Moreover, our parser does not rely on any
handcrafted features (not even part-of-speech
tags), which makes it more efficient and flexible to different domains or languages. In the experiments with the English
Treebank, our model achieves state-of-the-art (SoTA) results with/without pre-trained representations. It also performs
competitively with SoTA methods on the multilingual parsing tasks in SPMRL 2013/2014. Our model supports faster
decoding with a speed of over 1,100 sentences per second (fastest so far).

1.2 Discourse Analysis

In syntactic parsing, our goal was to find explicit representation that describes how the sentences are formed. However,
a well-written text is not merely a sequence of independent sentences, but instead a sequence of related sentences. It
addresses a particular topic, often covering multiple subtopics, and is organized in a coherent way that enables the
reader to process the information. In discourse analysis, we seek to uncover such underlying structures, which can
support many downstream applications. In my PhD [33, 40, 41, 38, 39, 36, 35] which was supported by NSERC
CGS-D2, I proposed novel computational models for discovering the rhetorical, topical and conversational structures of
a discourse.3 I continued working on these topics after my PhD, focusing not only on improving them further but also
on using the tools to improve end-user applications. I will describe some of them briefly in the following subsections.

1.2.1 RST Parsing & Its Applications

Different formal theories have been proposed to describe the coherence structure of a text. Rhetorical Structure Theory
(RST) is perhaps the most influential one, which posits a tree-like discourse structure. For example, consider the
discourse tree in Figure 3. The leaves of the tree correspond to contiguous atomic text spans, called elementary discourse
units (EDUs). Adjacent EDUs are connected by coherence relations (e.g., Elaboration, Contrast), forming larger
discourse units, which in turn are also subject to this relation linking. Discourse units linked by a relation are further
distinguished based on their relative importance in the text: nuclei are the core parts of the relation while satellites are
peripheral ones. For example, in Figure 3, the satellite EDU “— manufacturing strength —” elaborates the nucleus
EDU “But the thing it’s supposed to measure”, and two nuclei EDUs “Some people use the purchasers index as a
leading indicator” and “some use it as a coincident indicator” contrast each other. Conventionally, RST parsing involves
two subtasks: (i) discourse segmentation is the task of breaking the text into a sequence of EDUs, and (ii) discourse
parsing is the task of linking the discourse units (EDUs and larger units) into a labeled tree.

During my PhD [33, 40, 41, 38], I developed CODRA – a COmplete Discriminative framework for Rhetorical Analysis,
which comprises a discourse segmenter and a discourse parser. The crucial component is the use of a probabilistic
discriminative parsing model, expressed as a Dynamic Conditional Random Field (DCRF), to infer the probability of all
possible tree constituents. By representing the structure and the relation of each tree constituent jointly and by explicitly

2NSERC CGS-D is awarded to the top-ranked PhD students across Canada.
3Conversational (or dialogue) structures are applicable to only conversational discourse (e.g., multi-party conversations).
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Figure 3: A sample discourse tree. Horizontal lines indicate text segments; satellites are connected to their nuclei by
curved arrows and two nuclei are connected with straight lines.

capturing the sequential dependencies between tree constituents, the DCRF model does not make any independence
assumption among these properties. CODRA uses the inferred probabilities from the parsing models in a probabilistic
chart-based (CKY) bottom–up parsing algorithm, which is optimal. Furthermore, a simple modification of this parsing
algorithm allows us to generate k-best parse hypotheses, that are later used in a tree kernel-based reranker to improve
over the initial ranking using additional (global) features of the discourse tree as evidence [49].

CODRA uses the traditional feature-based statistical method which, along with the CKY parsing (O(n3)), makes it
slow for both training and inference, especially for long documents. Also, in CODRA and other existing methods,
discourse segmentation is detached from parsing and treated as a prerequisite step. Therefore, the errors in segmentation
affect the overall parsing performance. In our work [67, 70, 91], we are the first to propose a neural top-down discourse
parser that can parse a document end-to-end from scratch, making it much more efficient and easily adaptable to new
languages, domains and tasks by surpassing the expensive feature engineering step that often requires more time and
domain/language expertise. Crucially, our parser generates a discourse tree from scratch without requiring discourse
segmentation as a prerequisite; rather, it generates the EDUs as a by-product of parsing. Our novel formulation which is
based on the pointing mechanism (§1.1), facilitates solving discourse segmentation and parsing tasks in a single unified
neural model. Our parser achieves SoTA results on the benchmark datasets, while being faster than the existing ones. In
another front, we propose SegBot [62], a general-purpose text segmentation model based on pointer networks, and
show its effectiveness in both topic segmentation (i.e., larger discourse units) and EDU segmentation.

Application to MT. Among other applications of discourse, Machine Translation (MT) has received a resurgence of
interest lately. It is admitted that MT systems should consider phenomena that go beyond the current sentence to ensure
consistency in the choice of lexical items and referring expressions, and that source-language coherence relations are
also realized in the target language. Automatic MT evaluation is an integral part of the process of developing and tuning
MT systems. Reference-based evaluation metrics compare the output of a system to one or more human (reference)
translations, and produce a similarity score indicating the quality of the translation. The initial MT metrics approached
similarity as a shallow word n-gram matching between the translation and the reference, with a limited use of linguistic
information. BLEU is the best-known metric in this family, which has been used for years. However, it has been shown
that BLEU and metrics akin to it are insufficient and unreliable for high-quality translation output.

In [43, 26], we show that discourse information can be used to produce evaluation measures that improve over the
SoTA in terms of correlation with human assessments. We conduct our research in four steps. First, we design a
simple discourse-aware metric DR-LEX, which uses sub-tree kernel to compare RST trees generated with CODRA.
We show that this metric helps to improve a large number of MT evaluation measures at the segment-level and at the
system-level. Second, we show that tuning the weights in the linear combination of metrics using human assessed
examples is a robust way to improve the effectiveness of the DR-LEX metric significantly. Third, we conduct an
ablation study which helps us understand which elements of the RST tree have the highest impact on the quality of the
evaluation measure. Interestingly enough, the nuclearity feature (i.e., the distinction between main and subordinate
units) turns out to be more important than the discourse relation labels. Finally, based on these findings, we extend the
tree-based representations and present the DISCOTKparty metric, which makes use of a combination of discourse tree
representations and many other metrics. The resulting combined metric with tuned weights scored best as compared to
human rankings at the WMT14 Metrics task, both at the system and at the segment levels.

1.2.2 Coherence Modeling & Its Applications

Rather than parsing a discourse, the goal in coherence modeling is to build models that can distinguish a coherent
text from incoherent ones. It has been a key problem in discourse analysis with applications in text generation,
summarization, and coherence evaluation (e.g., essay scoring). Inspired by formal theories of discourse, a number
of coherence models have been proposed including the entity-based [8], syntax-based [73] and discourse relation
based models [68]. The entity grid model [8] is one of the most popular models that has received much attention
over the years. As exemplified in fig. 4a, the model represents a text by a grid that captures how grammatical roles
of different discourse entities (nouns) change from one sentence to another in the text. The grid is then converted
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(a) Entity grid representation for a document. Grid cells cor-
respond to grammatical roles of the entities in the sentences:
subjects (S), objects (O), other (X), and absent (–).

(b) Neural entity grid model proposed in [85]. The model is trained
using a pairwise ranking approach with shared parameters for
positive and negative documents.

Figure 4: (a) Entity grid representation of a document [8]; (b) the neural entity grid model [85].

into a feature vector containing probabilities of local entity transitions, enabling ML models to measure the degree of
coherence. In our work [85], we neuralized the traditional entity-grid model by using distributed representations of
entity transitions and entity features. We also presented an end-to-end training method to learn task-specific high level
features automatically in our model (fig. 4). In a follow-up work [48], we further improved the model by lexicalizing the
entity transitions based on word embeddings, and adapted the model to asynchronous conversations by incorporating
the underlying conversational structure in the grid representation and subsequently in feature computation. For this, we
proposed a novel grid representation for asynchronous conversations, and adapted the convolution layer of the neural
model accordingly.
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Figure 5: An overview of the coherence model proposed in [84].

According to [21], three factors collec-
tively contribute to coherence: the orga-
nization of discourse segments, intention
or purpose of the discourse, and attention
or focused items. The entity-based ap-
proaches capture attentional structure, the
syntax-based ones consider intention, and
the organizational structure is largely cap-
tured by models that consider discourse
relations and content (topic) distribution.
In our later work [84], we proposed a uni-
fied neural model that incorporates sen-
tence grammar (intentional structure), dis-
course relations, attention and topic struc-
tures in a single framework (fig. 5). We
used an LSTM sentence encoder with ex-
plicit language model loss to capture the
syntax. Inter-sentence discourse relations
are modeled with a bilinear layer, and a lightweight convolution-pooling is used to capture the attention and topic
structures. We evaluated our models on both local and global discrimination tasks on the benchmark dataset. Our results
showed that our approach outperforms existing methods by a wide margin in both tasks.

Applications of Coherence Models. Despite continuous research efforts in developing novel coherence models, their
usefulness in downstream tasks has largely been ignored. They have been evaluated in mainly two ways. The most
common approach has been to evaluate them on synthetic discrimination tasks that involve identifying the right order of
the sentences at the local and global levels. The other (rather infrequent) way has been to assess the impact of coherence
score as an additional feature in downstream tasks like readability assessment and essay scoring. But since the concept
of coherence goes beyond these constrained tasks and domains, so should the models. Given the recent advances in
neural NLP methods, with claims of reaching human parity in machine translation, and fluency in summarization and
language modeling, coherence evaluation of machine-generated texts is now more crucial than ever [60].

In our recent work [82], we showed through experiments that there is only a slight correlation between model
performances on synthetic tasks and real-world use cases. Although models perform strongly in the synthetic tasks, they
show poor performance and low correlations with human judgments on distinguishing coherent machine translations
and system-generated summaries from incoherent ones. They also fail to perform well on the next utterance ranking
task. However, we find that re-training the coherence models with task-specific data for machine translation evaluation
leads to improved results and agreements with human judgments. This led us to infer that models trained on traditional
synthetic tasks do not seem to be learning features that are useful for downstream applications. In our ongoing work,
we are redesigning the training paradigm for coherence models, while evaluating them on more tasks.
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1.2.3 Topic & Conversation Modeling

(a) Topic Modeling in Asynchronous Conversations. Coherence relations model local coherence between neigh-
bouring text segments. At a larger and global level, a discourse exhibits a topic structure. For example, a news article
about an earthquake may talk about the intensity, the damage, the aftershocks, and the casualties. Likewise, an email
conversation about arranging a conference may discuss conference schedule, organizing committee, accommoda-
tion, and registration. Topic segmentation refers to the task of grouping the sentences into a set of non-overlapping
topical segments, and topic labeling is the task of assigning short descriptions to the topical segments to facilitate
interpretations of the topics.

Extensive research had been conducted in topic segmentation for monologue (e.g., news articles) and for synchronous
dialog (e.g., meetings). However, no-one had studied this problem for asynchronous conversations (e.g., emails). There
was no reliable annotation scheme, no standard corpus, and no agreed-upon evaluation metrics available. During my
PhD [33, 39, 36], I presented two new corpora of email and blog conversations annotated with topics, and proposed a
complete computational framework and evaluation/agreement measures. For topic segmentation, I proposed two novel
unsupervised models that exploit the fine-grained conversational structure beyond lexical information. I also proposed a
novel graph-theoretic supervised topic segmentation model that combines lexical, conversational and topic features. For
topic labeling, I proposed two novel guided random walk models that capture conversation specific clues from two
different sources respectively: leading sentences and fine-grained conversational structure. In a follow-up work [77], we
propose to generate abstractive topic labels with textual entailment and aggregation instead of simply extracting them.

Time Sp Message Text

02:26 system ===zelot joined the channel
02:26 zelot hi, where can i get some help in

regards to issues with mount?
02:26 TuxThePenguin After taking it out
02:26 hannasanarion TuxThePenguin, try booting with

monitors connected to motherboard
02:26 pnunn TuxThePonguin, sounds like there is

on board graphics as well, so try that
without the card

02:27 hannasanarion pnunn, right
02:27 pnunn process of elimination.
02:27 TuxThePenguin Along with Occam’s Razor
02:27 Bashing-om zelot: If you are on a supported release

of ’buntu, this is a good place to ask.
02:27 TuxThePenguin Any solution is most likely the

simplest one
02:28 wllrt I’m a emacs newb and looking to

prevent rsi.

Figure 6: An excerpt of a conversation from the Ubuntu IRC
corpus. Same color reflects same conversation.

(b) Conversation Disentanglement. Multiple ongoing
conversations occur naturally, especially when the conver-
sation involves more than two participants (fig. 6). A task
related to topic segmentation is disentanglement, where
the goal is identify individual conversations from an in-
terleaved discussion thread. This can support users by
providing online help. It is often considered as a prereq-
uisite for downstream tasks such as utterance ranking and
generation, summarization and question answering [37].
Prior methods rely mostly on handcrafted features that are
dataset specific, which hinders generalization and adapt-
ability. In our work [122], we proposed an end-to-end
online framework that avoids time-consuming domain-
specific feature engineering. We designed a novel way
to embed the whole utterance that comprises timestamp,
speaker, and message text, and proposed a custom atten-
tion mechanism that models disentanglement as a pointing
problem while effectively capturing inter-utterance inter-
actions in an end-to-end fashion. We also introduced a
joint-learning objective to better capture contextual infor-
mation. Our experiments showed that our method achieves
SoTA performance in both link and conversation prediction tasks.

(c) Utterance Ranking. Retrieval-based response generation that selects a suitable response from a pool of candidates
(pre-existing human responses) has become a popular approach to framing dialog. Compared to the generation-based
systems that generate novel utterances, retrieval-based systems produce fluent, grammatical and informative responses.
Also compared to the traditional modular approach, it does not rely on dedicated modules for language understanding,
dialog management, and generation, thus simplifying the system design. Prior methods typically aim to encode the
context and the candidate responses in a joint semantic space by capturing short and long range dependencies, and then
retrieve the most relevant response by matching the query representation against each candidate’s representation through
attentions. Most of these methods are however limited to only two-party conversations (mostly one conversation topic).
As dialogue research progresses, it is necessary to study the more generic multi-party multi-turn scenario, which has
become very common (e.g., Slack, Whatsapp), and posits a unique set of challenges for the dialog models. For example,
consider the conversation excerpt in fig. 6, where there are three ongoing conversation topics as highlighted by different
color, and the participants can contribute to multiple topics simultaneously. An effective response selection method
should model such complex conversational topic dynamics in the context, for which existing methods are deficient. It
should match with its context in terms of the same conversation topic, while ignoring other non-relevant topics.

To address the these challenges in multi-party multi-turn dialog, in [116], we frame response selection as a dynamic
topic tracking task with the intuition that the topic should remain the same as we go from the context to the response.
Based on this new formulation, we propose a novel architecture (fig. 7) that can incorporate other related dialog tasks
such as conversation disentanglement, enabling multi-task learning in a unified framework. Crucially, our formulation
of the task needs to encode only two utterances at a time, thus allowing efficient encoding via large pretrained models
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Figure 7: Overview of our Topic-BERT architecture [116]. (a) Topic-BERT pretraining with topic sentence pairs to incorporate
utterance-utterance topic relationship. (b) Our multi-task framework which uses the pretrained Topic-BERT to enhance topic
information in the encoded representations to support three downstream tasks – response selection as the main task while topic
prediction and disentanglement as two auxiliary (optional) tasks.

like BERT. Furthermore, it facilitates pretraining of BERT-like models on topic related sentence pairs to incorporate
topic relevance in pretraining, which can be done on large dialog corpora with self-supervised objectives, requiring
no manual topic annotations, and can benefit not only response selection but also other dialog tasks. We evaluate the
proposed models on the DSTC-8 Ubuntu IRC dataset, and show state-of-the-art results in both response selection and
topic disentanglement outperforming the existing methods by a good margin.

(d) Dialog Act Recognition. Apart from the topic and coherence structures, a conversational discourse also exhibits
a conversation structure; participants interact with each other by performing certain communicative acts like asking
questions or requesting something, which are called dialog acts. Previous work on dialog act modeling has mostly
focused on synchronous conversations. The dominant approaches use supervised sequence taggers like linear-chain
CRFs to capture the conversational dependencies between the act types. However, modeling such conversational
dependencies in asynchronous conversation is challenging, because the conversational flow often lacks sequential
dependencies in its temporal order. In [33, 35], I proposed unsupervised conversational models, which are variants
of Hidden Markov Models (HMMs). First, I demonstrated that the conversational models learn better sequential
dependencies when they are trained on the sequences extracted from the finer conversational structure compared to
when they are trained on the temporal order of the sentences. Further investigation shows that the simple unsupervised
HMM tends to find topic clusters in addition to act clusters. To address this, I proposed an HMM+Mix model which not
only explains away the topics, but also improves the act emission distribution by defining it as a mixture model.4 In a
follow-up work [44, 47], I proposed a class of supervised structured models in the form of CRFs defined over arbitrary
graph structures of asynchronous conversations, while using an LSTM encoder to get the sentence representations.
In [83], we advance the SoTA by proposing hierarchical LSTMs trained with word embeddings learned from a large
unlabeled conversational corpus, and adapting the model with domain adversarial training to leverage the labeled data
from synchronous domains by explicitly modeling the shift in the two domains (e.g., meetings vs. forums).

1.3 Language Understanding Applications

1.3.1 Conversational Machine Reading

Significant progress has been made in teaching machines to read text and answer questions when the answer is directly
expressed in the text (e.g., SQuAD). However, in many situations such as interpreting rules to answer Can I...? or Will I
have to...?, the text only gives a recipe to derive a final answer given the reader’s background knowledge about the
situation. This involves both the interpretation of instructions and reasoning based on the background knowledge. It can
be further complicated due to missing information in the question in which case the reader has to ask further questions
for clarification (fig. 8). This question answering scenario has been formalized as conversational machine reading
(CMR) [98], where the machine (reader) needs to understand the knowledge base (KB) text, evaluate and keep track of
the user scenario, ask clarification questions, and then make a final decision.

Existing approaches to CMR formalize the problem as two sub-tasks. The first is to make a decision among Yes, No,
Irrelevant, and Inquire at each dialog turn given a rule text, a user scenario, an initial question and the current

4This work was conducted at Microsoft Research Asia, for which I was given the “Microsoft Research Excellent Intern” award.
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dialog history. If one of Yes, No, or Irrelevant is selected, it implies that a final decision (Yes/No) can be made in
response to the user’s initial question, or stating the user’s initial question is unanswerable (Irrelevant) according
to the rule text. If the decision at the current turn is Inquire, it will then trigger the second task for follow-up question
generation, which extracts an underspecified rule span from the rule text and generates a follow-up question accordingly.

Statutory Maternity Pay
To qualify for SMP you must:

* earn on average at least £113 a week
* give the correct notice
* give proof you’re pregnant

Do I qualify for SMP?

I've been old enough to get my pension. 

Do you earn on average at least 
£113 a week?

Yes

No

Rule 
Text

User 
Scenario

Initial 
Question

Turn 1

Turn 2

Turn 3

Yes No Irrelevant Inquire

Did you give the correct notice?

Decision:

Yes No Irrelevant InquireDecision:

Yes No Irrelevant InquireDecision:

No

## Taking more leave than the entitlement
If a worker has taken more leave than they’re
entitled to, their employer must not take money from
their final pay unless it’s been agreed beforehand in
writing. The rules in this situation should be outlined
in the employment contract, company handbook or
intranet site.

Can my employer take money from 
my final pay?

I have questions regarding my employer …

Did you take more leave than 
they ’re entitled to?

Yes

Yes

Rule 
Text

User 
Scenario

Initial 
Question

Turn 1

Turn 2

Turn 3

Yes No Irrelevant Inquire

Did you agree to it beforehand?

Decision:

Yes No Irrelevant InquireDecision:

Yes No Irrelevant InquireDecision:

Yes

Figure 8: An example of Conversational Machine
Reading tasks from ShARC [98].

In our work [19, 20], we identified two main drawbacks of existing
methods. First, with respect to the reasoning of the rule text, they do
not explicitly track whether a condition listed in the rule has already
been satisfied as the conversation flows so that it can make a better
decision. Second, with respect to the extraction of question-related
rules, it is difficult for them to extract the most relevant text span to
generate the next question.

In [19], we propose a new framework for CMR with a novel Explicit
Memory Tracker (EMT), which explicitly tracks each rule sentence
to make decisions and generate follow-up questions. It first segments
the rule text into several rule sentences and allocates them into its
memory. Then the initial question, user scenario, and dialog history
are fed into EMT sequentially to update each memory module sep-
arately. At each turn, EMT predicts the entailment states (satisfaction
or not) for every rule sentence, and makes a decision based on the
current memory status. If the decision is Inquire, it extracts a rule
span to generate a follow-up question by adopting a coarse-to-fine
reasoning strategy (i.e., weighting token-level span distributions with
its sentence-level entailment scores). Compared to previous meth-
ods which only consider entailment-oriented reasoning for decision
making or follow-up question generation, EMT utilizes its updated
memory modules to reason out these two tasks in a unified manner.
Our results show that explicitly tracking rules with external memories
boosts both the decision accuracy and the quality of generated follow-
up questions. In addition to the performance improvement, EMT
yields interpretability by explicitly tracking rules, which is visualized
to show the entailment-oriented reasoning process of our model.
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Step ②

Step ③

[If a worker has taken more leave than they’re entitled to,]EDU1 [their employer must not take money from 
their final pay ]EDU2 [unless it’s been agreed beforehand in writing.]EDU3

mapping

Rule Text: If a worker has taken more leave than they’re entitled to, their employer must not take money from 
their final pay unless it’s been agreed beforehand in writing.

Discourse Segmentation

User ScenarioUser Question

Figure 9: Taking the segmented EDUs (conditions), user question, user
scenario, and dialog history as inputs, DISCERNreasons out the decision
among Yes, No, Irrelevant and Inquire. For Inquire decision,
the question generation model asks a follow-up question.

Considering that interpretation of rule text
and dialog is crucial for CMR, our follow-up
work [20] proposes DISCERN: Discourse-Aware
Entailment Reasoning Network(fig. 9). To better
understand the logical structure of a rule text and
to extract conditions from it, it first segments the
rule text into clause-like elementary discourse
units (EDUs) using a pre-trained discourse seg-
menter (§1.2.1). Each EDU is treated as a con-
dition of the rule text, and our model estimates
its entailment confidence scores over three states:
ENTAILMENT, CONTRADICTION or NEUTRAL
by reading the user scenario and dialog history.
Then we map the scores to an entailment vec-
tor for each condition, and reason out the de-
cision based on the entailment vectors and the
logical structure of the rules. DISCERN is the
first method to explicitly build the dependency
between entailment states and decisions at each
dialog turn. DISCERN outperforms EMT and
achieves the SoTA results on the blind, held out
test set of ShARC [98]. Specifically, DISCERN
performs well on simple in-line conditions and
conjunctions of rules while still needing improve-
ments on understanding disjunctions.

1.3.2 Community Question Answering

Community question answering (cQA) is an evolution of the traditional question answering (QA), in the Web context,
where users pose questions and then receive answers from other users. This setup is attractive as the anonymity on the
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Web allows users to ask just about anything and then hope to get some honest answers from a number of people. On the
negative side, there is no guarantee about the quality of the answers as people of very different background, knowledge,
and with different motivation contribute answers to a given question.

q: “How can I extend a family visit visa?”

qi: “Dear All; I wonder if anyone knows the procedure
how I can extend the family visit visa for my wife
beyond 6 months. I already extended it for 5 months
and is 6 months running. I would like to get it ex-
tended for couple of months more.Any suggestion is
highly appreciable.Thanks”

cim: “You can get just another month’s extension before
she completes 6 months by presenting to immigration
office a confirmed booking of her return ticket which
must not exceed 7 months.”

Figure 10: Example of three pieces of information in cQA
problems: q is a newly-posed question, cim denotes them-th
comment (m ∈ {1, 2, . . . ,M}) in the answer thread for
the i-th potentially related question qi (i ∈ {1, 2, . . . , I})
retrieved from the forum.

In cQA, three tasks are of special relevance when a user poses
a new question to the website (fig. 10): (a) determine whether
a comment within a question-comment thread is a good answer
to the question of that thread (i.e., answer goodness), (b) find
related questions to the new question (i.e., question-question
similarity), and (c) find relevant answers to the new question
(i.e., answer selection). These tasks are interrelated as the
information needed to answer a new question is usually found
in the good comments of highly related questions.

In [34, 7, 45], we focused on task (a) , i.e., classifying com-
ments of an answer-thread as good vs. bad answers with respect
to the thread question. This is a real problem, as a question
can have hundreds of comments, the vast majority of which
would not satisfy the users’ information needs. Thus, finding
the desired information in a long list of answers might be very
time-consuming. The traditional approach learns a local clas-
sifier and uses it to predict for each comment separately. In
contrast, we postulate that in a cQA setting, the answers from
different users in a common thread are strongly interconnected and, thus, a joint answer selection model should be
adopted to achieve higher accuracy. We model the thread-level dependencies in two different ways: (i) by designing
specific features that are able to capture the dependencies between the answers in the same thread [7]; and (ii) by
treating the task as joint learning (with global inference) over a fully-connected graph [34, 45]. I proposed two novel
joint learning models that are on-line and integrate inference within learning. The first one jointly learns two node-
and edge-level MaxEnt classifiers with stochastic gradient descent and integrates the inference step with loopy belief
propagation. The second model is an instance of fully connected pairwise CRFs (FCCRF), which performs a global
normalization of the functions. The FCCRF model significantly outperforms all other approaches and yields the best
results on the task to date. Crucial elements for its success are the global normalization and an Ising-like edge potential.
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Figure 11: Graphical representation of our cQA model. On the left, we
have three feed-forward neural networks to learn task-specific embed-
dings for the three cQA subtasks. On the right, a global CRF models
intra- and inter-subtask dependencies.

Later in [46], we consider solving tasks (b) and
(c) jointly with the help of task (a) in a joint multi-
task learning framework (fig. 11). My approach
has two steps. First, a deep neural net (DNN) in the
form of a feed-forward neural network is trained
to solve each of the three individual tasks, and the
task-specific hidden layer activations are taken as
embedded feature representations to be used in the
second step. Then, a structured conditional model,
a CRF, uses these embeddings and performs joint
learning with global inference to exploit the de-
pendencies between the different tasks. Previous
work had mostly relied on recurrent or recursive
architectures to propagate information through hid-
den layers, but had been disregarding the modeling
strength of structured conditional models, which
use global inference to model consistency in the
output structure (i.e., the class labels of all nodes
in a graph). We explore the idea that combining
simple DNNs with structured conditional models
can be an effective and efficient approach for cQA subtasks that offers the best of both worlds. Our experimental results
show that: (i) DNNs already perform very well on the question-question similarity and answer selection subtasks;
(ii) strong dependencies exist between the subtasks under study, especially answer-goodness and question-question-
relatedness influence answer-selection significantly; (iii) the CRFs exploit the dependencies between subtasks, providing
sizeably better results that are on par or above the state of the art.

To allow effective access to the output of the cQA system, we also designed a web-based interactive cQA interface. The
whole system was evaluated with real forum users and the findings were published in an IUI paper [31].
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1.3.3 Data Augmentation for Sequence Labeling

Many tasks in NLP involve sequence labeling including syntactic and semantic tasks such as POS tagging and named
entity recognition (NER). Neural models have outperformed traditional ML models on these tasks. However, they
remain to be data hungry. Acquiring large annotated data can be expensive and prohibitive.

Figure 12: An example of labeled sentence linearization. All
words and their tags are paired up by inserting tags before (or
after) the words (O tags removed).

In our work [15], we propose a simple generation-based
data augmentation method for low-resource sequence label-
ing tasks. Our method first linearizes the labeled sentences
(fig. 12). Then a conditional language model (CLM) is
trained on the linearized data and used to generate synthetic
labeled data. Unlike employing weak taggers to label un-
seen data, our method unifies the processes of sentence
generation and labeling using a CLM. Concretely, a word
and its tag in a pair (e.g., “B-PER Jose”) are trained to be
generated together. Our method does not require additional
resources like gazetteer. Nevertheless, if unlabeled data or knowledge bases are available, it is also flexible to utilize
these resources with a simple but effective conditional generation technique. Our method consistently outperforms the
baselines in both supervised and semi-supervised settings on NER, POS tagging and target based sentiment analysis.

1.3.4 Opinion Analysis

Fine-grained opinion mining involves: (i) identifying the opinion holder, (ii) identifying the target or aspect of the
opinion, (iii) detecting opinion expressions, and (iv) measuring the intensity and sentiment of the opinion expressions.
For example, in the sentence “John says, the hard disk is very noisy”, John, the opinion holder, expresses a very negative
opinion towards the target “hard disk” using the opinionated expression “very noisy”. In an early work [71], we propose
a general class of models based on Recurrent Neural Network (RNN) and word embeddings, that can be successfully
applied to fine-grained opinion mining tasks without any task-specific feature engineering effort.

Our results on the task of opinion target extraction show that word embeddings improve the performance of state-of-
the-art CRF models, when included as additional features. They also improve RNNs when used as pre-trained word
vectors and fine-tuning them on the task gives the best results. A comparison between models demonstrates that RNNs
outperform CRFs, even when they use word embeddings as the only features. Incorporating simple linguistic features
into RNNs improves the performance even further. Our best results with LSTM RNN outperform the top performing
system on the Laptop dataset and achieve the second best on the Restaurant dataset in SemEval-2014.

2 Multilingual Processing

With the advent of deep learning, NLP systems have seen remarkable advances in recent years. But they rely heavily on
data-hungry models. Due to the availability of the data, these systems have been developed mostly for English and
a handful of other high-resource languages like Chinese, French and German. However, there are more than 7,100
different languages, most of which have low/no resources (few/no labeled data, small/no Wikipedia, few/no online
documents). Building systems only for the high-resource languages deprives a large part of the world population from
language technologies. Fortunately, many of the languages do share a considerable amount of underlying structure at
different linguistic levels (e.g., vocabulary, word order). A significant part of my current research focuses on multilingual
NLP, where the goal is to develop systems that perform well for diverse languages under low-resource conditions, while
addressing questions of scientific interest about languages and their structural and functional properties. My interests lie
in developing both supervised and unsupervised MT systems and general multilingual NLP models.

2.1 Machine Translation & Its Evaluation

Machine Translation (MT) has been considered as a flagship task in neural NLP that involves both language understand-
ing and generation. There is a huge need for MT, both for humanity and for commerce. In our lab, we work on different
aspects of MT research including novel model architectures, data augmentation, discourse or contextual MT, domain
adaptation, bilingual dictionary induction, semi-supervised and unsupervised MT, and MT evaluation.

2.1.1 Supervised MT

Our research on supervised MT (i.e., learning from parallel data) has focused on enhancements from the perspectives of
both models and data, as I describe below.

(a) Tree-based Encoding Incorporating hierarchical structures like constituency trees has been shown to be effective
for various NLP tasks. However, it is evident that SoTA sequence-based models like the Transformer [112] struggle to
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Figure 13: The hierarchical accumulation process of tree structures (best seen in colors). Given a parse tree, it is
interpolated into a tensor S, which is then accumulated vertically from bottom to top to produce Ŝ. Next, the (branch-
level) component representations of the non-terminal nodes are combined into one representation as N by weighted
aggregation. Multi-colored blocks indicate accumulation of nodes of respective colors.

encode such structures inherently. On the other hand, dedicated models like the Tree-LSTM [108], while explicitly
modeling hierarchical structures, do not perform as efficiently as the Transformer. In our ICLR-20 paper [92], we
propose a novel attention-based method that encodes trees in a bottom-up manner and executes competitively with the
Transformer at constant parallel time complexity. As attentions typically have query, key and value components, our
model uses hierarchical accumulation to encode the value component of each non-terminal node by aggregating the
hidden states of all of its descendants. The accumulation process is three-staged (fig. 13). First, we induce the value
states of non-terminals with hierarchical embeddings, which help the model become aware of the hierarchical and
sibling relationships between the nodes. Second, we perform an upward cumulative-average operation on each target
node, which accumulates all elements in the branches originating from the target node to its descendant leaves. Third,
these branch-level representations are combined into a new value representation of the target node by using weighted
aggregation. Finally, the model proceeds to perform attention with subtree masking where the attention score between a
non-terminal query and a key is activated only if the key is a descendant of the query.

We adopt our methods within the Transformer architecture and show improvements in the IWSLT’13 and WMT’14
English↔German and English↔ French translation benchmarks. Our model also exhibits advantages over Tree-LSTM
in classification tasks including Stanford Sentiment Treebank, IMDB Sentiment Analysis and Subject-Verb Agreement.

(b) Differentiable Attention Window. Rather than defining attentions over trees, we focus on attentions over local
windows (i.e., ngrams of tokens) in our subsequent work. Particularly, our work [88] focuses on improving attentions
with differentiable windows. The key idea is to enable more focused attention, leveraging dynamic window selection for
limiting (and guiding) the search space for the standard attention modules to work within. This can also be interpreted
as performing a form of dynamic local attention. We make several key technical contributions. First, we formulate
the dynamic window selection problem as a problem of learning a discrete mask, i.e., binary values representing the
window (fig. 14). By learning and composing left and right boundaries, we show that we are able to parameterize the
(discrete) masking method. We then propose soft adaptations of the above mentioned, namely trainable soft masking
and segment-based soft masking, which are differentiable approximations that can not only be easily optimized in an
end-to-end fashion, but also inherit the desirable properties of discrete masking.

φTlq

φTrq

flq = φTlqLn

grq = φTrqL
T
n

mq = flq � grq

Figure 14: Example of discrete masking with left and right
boundary prediction models φT

lq and φT
rq , and cumulative

sums flq and grq , and finally how the mask vector mq can
be derived from flq and grq for lq = 3 and rq = 8.

While these modules are task and model agnostic, we imbue the
Transformer [112] model with our differentiable window-based
attention. To this end, we propose two further variants, i.e., mul-
tiplicative window attention and additive window attention for
improving the Transformer model. We evaluate our approach
on a potpourri of NLP tasks, namely machine translation, senti-
ment analysis, language modeling, and subject-verb agreement.
Extensive experimental results on these tasks demonstrate the
effectiveness of our proposed method.

(c) Data Augmentation While the invention of novel archi-
tectures has been fundamental to MT progress, other non-
intrusive extensions that do not modify the model architecture
intensively like sub-word tokenization [104] to deal with out-of-vocabulary (OOV) problem or back-translation [103] to
exploit extra monolingual data, have been crucial in advancing MT research. In our NeurIPS-20 paper [93], we propose
Data Diversification, a simple but effective way to improve MT consistently and significantly. In this method, we first
train multiple models on both backward (target→source) and forward (source→target) translation tasks. Then, we
use these models to generate a diverse set of synthetic training data from both sides to augment the original data. Our
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method achieved the SoTA (at the time of publication) in the WMT’14 English-German and English-French translation
tasks. Furthermore, it gives 1.0-2.0 BLEU gains in 4 IWSLT tasks (English↔German and English↔French) and 4
low-resource tasks (English↔Sinhala and English↔Nepali). We demonstrate that data diversification outperforms
other related methods – knowledge distillation [58] and dual learning [117], and is complementary to back-translation
in a semi-supervised setup. Our analysis further reveals that the method is correlated with ensembles of models and it
sacrifices perplexity for better BLEU.

Figure 15: Illustration of AugVic for Bengali-to-English translation. Here (xi, yi)
is the original bitext pair, ỹi is a vicinal sample of yi, and (x̃i, ỹi) is a synthetic pair
where x̃i is generated by a reverse intermediate translation systemMt→s. Right
side of the figure shows the successive steps of vicinal sample generation.

Since the performance of Data Diversi-
fication depends on the performance of
the base MT models, the improvements
on low-resource languages are generally
lower compared to high-resource ones, as
the base MT models are much weaker
in low-resource translation tasks. Back-
translation (BT) has proved to be quite
successful when sufficient in-domain
monolingual data is available. However,
when such data is scarce, which is indeed
a common situation in low-resource set-
tings, the success of BT is limited. BT
can also suffer when there is a domain mismatch between the training and test domains. In a recent work [79], we
propose AugVic, a novel method to augment vicinal samples around the bitext distribution (fig. 15). Instead of using
extra monolingual data, it aims to leverage the vicinal samples of the original bitext, thereby enlarging its support to
improve model generalization. With the goal of training a source-to-target NMT system, AugVic augments vicinal
samples in the target language. The vicinal samples are generated by predicting the masked tokens of a target bitext
sentence using a pretrained large-scale language model. To generate synthetic bitext data from these augmented vicinal
samples through a reverse intermediate (target-to-source) model, we propose two different methods: the first one is
based on the traditional BT, while the second one leverages the original source sentence as a guide. Our results show
significant improvements over the bitext baselines with 2.76 BLEU gains on an average on eight different translation
tasks without using any extra monolingual data. AugVic also complements traditional BT with additive gains when extra
monolingual data is used. We also show AugVic’s efficacy in bridging the gap between in-domain and out-of-domain
performance in traditional back-translation with monolingual data.

(d) Discourse-based MT Thanks to the attention mechanism, NMT models such as the Transformer [112] can model
much broader context. While initially translation was still done in a sentence-by-sentence fashion, researchers soon
realized that going beyond that has become easier, and recent work has successfully exploited this. This is an exciting
research direction as it can help address discourse phenomena such as anaphora, gender agreement, lexical consistency,
and text coherence. However, it has been shown that even with the broader context, NMT models still fail on these
aspects [102]. They tend to prefer a more typical alternative to a relatively rare but correct one (e.g., French “Il” is often
wrongly translated to the more common “it” than “he” ). However, these seemingly trivial errors can erode translation
to the extent that they can be easily distinguishable from human-translated texts [60].

There could be several reasons for why NMT models make such mistakes. In our work [52], we hypothesize that
since almost all NMT models are trained with a conditional language model objective, it is clear that this objective
alone is proving inadequate to capture all of the information available in the text. We therefore propose a class of
conditional generative-discriminative hybrid losses that explicitly teach models what to generate and what not to
generate. Specifically, we target the improvement of pronoun translation by focusing our fine-tuning efforts through our
proposed objectives and also through leveraging the training data by extracting a subset of targeted fine-tuning data
that the model has failed to learn correctly from. We show improvements both in general translation quality and in the
pronoun translation without compromising on either, and we do this without any elaborate model architecture.

(e) Domain Adaptation for MT: Prior to the end-to-end NMT paradigm, a notably successful attempt on using
neural networks for MT was the Neural Network Joint Model (NNJM) [14], which augments streams of source with
target n-grams and learns a neural model over the vector representation of such streams. Impressive gains were
achieved with NNJM used as an additional feature in the SMT decoder. In [42, 51], we extended NNJM for domain
adaptation in order to leverage the huge amount of out-of-domain data coming from heterogeneous sources. We carry
out our research in two ways: (i) we apply state-of-the-art domain adaptation techniques, such as mixture modeling
and data selection using the NNJM, and (ii) we propose two novel methods to perform adaptation through instance
weighting and weight readjustment in the NNJM framework. Our first method uses data dependent regularization in
the loss function to perform (soft) data selection, while the second method fuses the in- and the out-domain models to
readjust their parameters. Our evaluation on standard translation tasks demonstrates that the adapted models outperform
the non-adapted baselines and the deep fusion model outperforms the other neural adaptation methods as well as
phrase-table adaptation techniques. We also demonstrate that our methods are complementary to the existing methods.
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2.1.2 Unsupervised and Semi-supervised MT

Although recent neural approaches to MT [112] have advanced the state of the art, they continue to rely heavily on large
parallel data. Such large-scale parallel data is not always available, especially for low-resource languages. Therefore,
the search for unsupervised and semi-supervised alternatives using monolingual data has been active. In this regard, our
research spans both word-level and sentence-level translations as I briefly describe below.

Figure 16: Adversarial autoencoder for CLWE.

(a) Word Translation & Cross-lingual Embeddings Most re-
cent successful methods for Word Translation or Bilingual Lex-
icon Induction (BLI) are mapping-based, where a mapping func-
tion is learned to transform the word embeddings in a source
language to the corresponding embeddings in the target language.
This gives cross-lingual word embeddings (CLWE), where words
with similar meanings are represented by similar vectors regard-
less of their actual language. CLWE enable comparing the mean-
ing of words across languages, which is key to BLI and other
multi-lingual applications such as unsupervised MT and multi-
lingual retrieval. They also play a crucial role in knowledge trans-
fer between languages (e.g., from high to low resource languages)
by providing a common representation space.

Adversarial training has shown impressive success in learning
CLWE without any parallel data (i.e., unsupervised). However,
recent work has shown superior performance for non-adversarial
methods in more challenging language pairs. Also, most predom-
inant methods learn a linear mapping function with the assumption that the word embedding spaces of different
languages exhibit similar geometric structures (i.e., approximately isomorphic). However, several recent studies have
criticized this simplified assumption showing that it does not hold in general even for closely related languages. In
our work [81, 80], we revisit adversarial training and propose a number of key improvements that yield more robust
training and improved mappings. Our main idea is to learn the cross-lingual mapping in a projected latent space and
add more constraints to guide the unsupervised mapping in this space. We accomplish this by proposing a novel
adversarial autoencoder framework, where adversarial mapping is done at the (latent) code space as opposed to the
original embedding space (fig. 16). This gives the model the flexibility to automatically induce the required geometric
structures in its latent code space that could potentially yield better mappings. By mapping the latent vectors through
adversarial training, our approach therefore departs from the isomorphic assumption.

In our adversarial training, not only the mapper but also the target encoder is trained to fool the discriminator. This forces
the discriminator to improve its discrimination skills, which in turn pushes the mapper to generate indistinguishable
translation. To guide the mapping, we include two additional constraints. Our first constraint enforces cycle consistency
so that code vectors, after being translated from one language to another, and then translated back to their source
space, remain close to the original vectors. The second constraint ensures reconstruction of the original input word
embeddings from the back-translated codes. This grounding step forces the model to retain word semantics during
the mapping process. Extensive experimentations with high- and low-resource languages from two different datasets
show that our method achieves better performance than existing adversarial and non-adversarial approaches and is also
competitive with the supervised system.

While not requiring any cross-lingual supervision makes the unsupervised methods attractive, a recent study [114]
shows that these methods lack robustness and fail for a large number of languages. In our recent work [78], we propose
LNMAP (Latent space Non-linear Mapping), a novel semi-supervised approach that uses minimal supervision from a
seed dictionary, while leveraging semantic information from the monolingual word embeddings. LNMAP comprises
two autoencoders (similar to fig. 16 but does not use adversarial training), which are first pre-trained independently in a
self-supervised way to induce the latent code space of the respective languages. Then, we use a small seed dictionary to
learn the non-linear mappings between the two code spaces. Our experiments with 15 different language pairs (in both
directions) comprising high- and low-resource languages show significant improvements for LNMAP over SoTA in
most of the tested scenarios. It is particularly very effective for low-resource languages; for example, using 1K seed
dictionary, LNMAP yields about 18% absolute improvements on average over a SoTA supervised method.

(b) Unsupervised Sentence-level MT The goal of unsupervised (sentence-level) MT or UMT is to learn an MT
model using only monolingual data. The standard UMT framework follows three main principles: model initialization,
language modeling and iterative back-translation. Model initialization bootstraps the model with a knowledge prior like
word-level transfer as described above. Language modeling, which takes the form of denoising auto-encoding (DAE)
trains the model to generate plausible sentences in a language. Meanwhile, iterative back-translation (IBT) facilitates
cross-lingual translation training by generating noisy source sentences for original target sentences. In our recent paper
[94], we focus on a different aspect of the UMT framework, namely, its data diversification. If we look from this view,
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the DAE and IBT steps perform some form of data diversification to train the model. However, we conjecture that
these diversification methods may have reached their limit as the performance does not improve further the longer
we train the UMT models. In our work, we introduce a fourth principle to the standard framework: Cross-model
Back-translated Distillation or CBD, with the aim to induce another level of diversification that the existing principles
lack. CBD initially trains two UMT agents (models) using existing approaches. Then, one of the two agents translates
the monolingual data from one language s to another t in the first level. In the second level, the generated data are
back-translated from t to s by the other agent. In the final step, the synthetic parallel data created by the first and
second levels are used to distill a supervised MT model. CBD is applicable to any existing UMT method and is more
efficient than ensembling methods. CBD establishes the SoTA in the bilingual UMT tasks of WMT’14 English-French,
WMT’16 English-German and WMT’16 English-Romanian. Without large scale pre-trained models and data, it shows
consistent improvements of 1.0-2.0 BLEU compared to the baseline. It also boosts the performance on IWSLT tasks
significantly. In our analysis, we explain with experiments why other similar variants and other alternatives from
literature do not work well and cross-model back-translation is crucial for our method. We further demonstrate that
CBD enhances the baselines by achieving greater diversity as measured by back-translation BLEU.

2.1.3 MT Evaluation

(a) Evaluation of Pronoun Translations As mentioned, the neural revolution in MT has made it easier to model
larger contexts beyond the sentence-level, which can potentially help resolve some discourse-level ambiguities such as
pronominal anaphora. Unfortunately, even when the resulting improvements are seen as substantial by humans, they
remain virtually unnoticed by traditional automatic evaluation measures such as BLEU, as only a few words end up
being affected. It has long been argued that as the quality of machine translation improves, there will be a singularity
moment when existing evaluation measures would be unable to tell whether a given output was produced by a human or
by a machine. Indeed, there have been recent claims that human parity has already been achieved, but it has also been
shown that it is easy to tell apart a human translation from a machine output when going beyond the sentence level [60].
Overall, it is clear that there is a need for machine translation evaluation measures that look beyond the sentence level,
and thus can better appreciate the improvements that a discourse-aware MT system could potentially bring.

Figure 17: Our proposed framework to differentiate good
pronoun translations from bad ones in context [53].

With this aim in mind, in [53], we contribute an extensive,
targeted dataset that can be used as a test suite for pronoun
translation, covering multiple source languages and differ-
ent pronoun errors drawn from real system translations, for
English. We further present a specialized evaluation mea-
sure (fig. 17) trained on this dataset. The measure performs
pairwise evaluations: it learns to distinguish good vs. bad
translations of pronouns, without being given specific signals
of the errors. Our user study shows that the evaluation measure
achieves high agreement with human judgments.

(b) Neural Pairwise MT Evaluation In another front
[27, 28], earlier we presented a framework for MT evalua-
tion using neural networks in a pairwise setting, where the
goal is to select the better translation from a pair of hypothe-
ses, given the reference translation. In this framework, lexical,
syntactic and semantic information from the reference and
the two hypotheses are embedded into small distributed vec-
tor representations, and fed into a multi-layer perceptron that
models non-linear interactions between each of the hypotheses
and the reference, as well as between the two hypotheses. We experiment with benchmark datasets from the WMT
Metrics shared task, on which we obtain the best results published so far, with the basic network configuration. We
also perform a series of experiments to analyze and understand the contribution of the different components of the
network. We evaluate variants and extensions including, among others: fine-tuning of the semantic embeddings, and
sentence-based representations modeled with recurrent neural networks. The proposed framework is flexible and
generalizable, allows for efficient learning and scoring, and provides an MT evaluation metric that correlates with
humans on par with the state of the art.

2.2 Multi-lingual Modeling

In recent years there has been an increase in the number of methods that attempt to learn general-purpose multilin-
gual representations, which aim to capture shared knowledge across languages. Jointly trained deep contextualized
multilingual LMs such as mBERT, XLM-R and mBART, coupled with supervised fine-tuning in the source (English)
language, have been quite successful in transferring linguistic and task knowledge from one language to another without
using any task labels in the target language (called zero-shot transfer). The joint pre-training with multiple languages
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allows these models to generalize across languages. Despite their effectiveness, recent studies have also highlighted one
crucial limiting factor for successful cross-lingual transfer. They all agree that the cross-lingual generalization ability of
the model is limited by the (lack of) structural similarity between the source and target languages. For example, for
transferring mBERT from English, [54] report about 23.6% accuracy drop in Hindi (structurally dissimilar) compared
to 9% drop in Spanish (structurally similar) in cross-lingual natural language inference (XNLI). The difficulty level of
transfer is further exacerbated if the (dissimilar) target language is low-resourced, as the joint pretraining step may not
have seen many instances from this language in the first place.

Figure 18: Training flow of UXLA. After training the base task
models θ(1), θ(2), and θ(3) on source labeled data Ds (WarmUp),
we use two of them (θ(j), θ(k)) to pseudo-label and co-distill
the unlabeled target language data (D′

t). A pretrained LM (Gen-
LM) is used to generate new vicinal samples for both source and
target languages, which are also pseudo-labeled and co-distilled
using the two task models (θ(j), θ(k)) to generate D̃s and D̃t. The
third model θ(l) is then progressively trained on these datasets:
{Ds,D′

t} in epoch 1, D̃t in epoch 2, and all in epoch 3.

One attractive way to improve cross-lingual generaliza-
tion is to perform data augmentation, and train the model
on examples that are similar but different from the la-
beled data in the source language. Back-translation [103]
has been a successful method but requires parallel data
to train effective machine translation systems, acquiring
which can be more expensive for low-resource languages
than annotating the target language data. In our work [5],
we propose UXLA (fig. 18), a robust unsupervised cross-
lingual augmentation framework for improving cross-
lingual generalization of multilingual LMs. UXLA aug-
ments data from the unlabeled training examples in the
target language as well as from the virtual input samples
generated from the vicinity distribution of the source
and target language sentences. With the augmented
data, it performs simultaneous self-learning with an ef-
fective sample distillation to learn a strongly adapted
cross-lingual model from noisy (pseudo) labels for the
target language task. We propose novel ways to gener-
ate virtual sentences using a multilingual masked LM,
and get reliable task labels by simultaneous multilingual
co-training. This co-training employs a two-stage co-
distillation process to ensure robust transfer to dissimilar
and/or low-resource languages. We perform extensive
experiments on three diverse zero-resource cross-lingual
transfer tasks – XNER, XNLI, and PAWS-X, and across
many (14 in total) language pairs comprising languages
that are similar/dissimilar/low-resourced. UXLA yields impressive results on XNER, setting SoTA in all tested languages
and outperforming the baselines by a good margin. The relative gains for UXLA are particularly higher for structurally
dissimilar and/or low-resource languages: 28.54%, 16.05%, and 9.25% absolute improvements for Urdu, Burmese,
and Arabic, respectively. For XNLI, with only 5% labeled data in the source, it gets comparable results to the baseline
that uses all the labeled data, and surpasses the standard baseline by 2.55% on average when it uses all the labeled
data in the source. We also have similar findings in PAWS-X. We provide a comprehensive analysis of the factors that
contribute to UXLA’s performance.

In a concurrent work [123], we propose a novel fine-tuning method based on co-training that aims to learn more
generalized semantic equivalences as complementary to multilingual language modeling (e.g., masked LM) using the
unlabeled data in the target language. We also propose an adaption method based on contrastive learning to better
capture the semantic relationship in the parallel data, when a few translation pairs are available. We report significant
gains compared to directly fine-tuning multilingual pre-trained models and other semi-supervised alternatives.

In another recent work [69], we consider a low-resource setting for cross-lingual NER, where there is limited source-
language training data and no target-language train/dev data. We first introduce a novel labeled sequence translation
method to translate the training data to the target language as well as to other languages (fig. 19). Compared with
exiting methods, our labeled sentence translation approach leverages placeholders for label projection, which effectively
avoids many issues faced during word alignment, such as word order change, entity span determination, noise-sensitive
similarity metrics and so on. This allows us to finetune the LM based NER model on multilingual data rather than on
the source-language only. Note however that this instance-based transfer add limited semantic variety to the training set,
since they only translate entities and the corresponding contexts to a different language. To add more diversity in the
training data, we extend our previously proposed method [15] for monolingual data augmentation to multilingual data
augmentation (fig. 12). Particularly, we train conditional LMs on multilingual labeled data and then use it to generate
more synthetic multilingual training data. Through empirical experiments, we observe that when fine-tuning pretrained
multilingual LMs for low-resource cross-lingual NER, translations to more languages can also be used as an effective
data augmentation method, which helps improve performance of both the source and the target languages.
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Labeled sentence in the source language:
[PER Jamie Valentine] was born in [LOC London].

1. Translate sentence with placeholders:
src: PER0 was born in LOC1.
tgt: PER0 nació en LOC1.

2. Translate entities with context:
PER0
src: [Jamie Valentine] was born in London.
tgt: [Jamie Valentine] nació en Londres.

LOC1
src: Jamie Valentine was born in [London].
tgt: Jamie Valentine nació en [Londres].

3. Replace placeholders with translated entities:
[PER Jamie Valentine] nació en [LOC Londres].

Figure 19: An example of labeled sentence translation.

Previously in [6], we proposed a zero-resource transfer frame-
work with two encoders – one for the source language and the
other for the target. Our source model was based on a bidirec-
tional LSTM-CRF, which we transfer to a target model in two
steps. We first project the mono-lingual word embeddings to
a common space through word-level adversarial training. The
word-level mapping yields initial cross-lingual links between
two languages but does not take any NER information into ac-
count. Transferring task information in the cross-lingual setup
is specifically challenging because languages vary in the word
order. To tackle this, we propose an augmented fine-tuning
method with parameter sharing and feature augmentation, and
jointly train the target model in supervision of the source model.

Prior Work on Cross-lingual cQA. In our prior work [50,
76], we studied the problem of question-question similarity
reranking in community Question Answering (cQA), when the
input question can be either in English or in Arabic, and the
questions it is compared to are always in English. We start with a simple language-independent representation based on
cross-language word embeddings, which we input into a feed-forward multilayer neural network to classify pairs of
questions, (English, English) or (Arabic, English), regarding their similarity. Furthermore, we explore the question of
whether adversarial training can be used to improve the performance of the network when we have some unlabeled
examples in the target language (fig. 40). In our setup, the basic task-solving network is paired with another network
that shares the internal representation of the input and tries to decide whether the input example comes from the source
(English) or from the target (Arabic) language. The training of this language discriminator network is adversarial with
respect to the shared layers by using gradient reversal during backpropagation, which makes the training to maximize
the loss of the discriminator rather than to minimize it. The main idea is to learn a high-level abstract representation
that is discriminative for the main classification task, but is invariant across the input languages.
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Figure 20: Architecture of CLANN for the question to
question similarity problem in cQA.

We show that using the unlabeled data for adversarial training
allows us to improve the results by a sizable margin in both di-
rections, i.e., when training on English and adapting the system
with the Arabic unlabeled data, and vice versa. Moreover, the
resulting performance is comparable to the best monolingual
English systems at SemEval. We also compare our unsuper-
vised model to a semi-supervised model, where we have some
labeled data for the target language. To the best of our knowl-
edge, ours is the first to show promising results with adversarial
training for cross-lingual representation learning, moreover, we
are not aware of any work on cross-language question reranking
for cQA prior to our work.

3 Language Generation

Text generation has been a core problem in NLP. Thanks to the advances in neural architectures such as Transformers
[112], models are now capable of generating texts that are of better quality than before. However, modern text
generations systems still suffer from a number of key issues including dull and repetitive generation, hallucinated output
and toxic output. Our work aims at mitigating these issues of neural text generation as we describe below.

3.1 Mitigating Degeneration & Coverage Issues in Text Generation Applications

Despite the countless efforts that have been made to improve neural architectures for language generation, models
trained with the standard Maximum Likelihood Estimation (MLE) objective are known to prefer generating dull and
highly repetitive texts, a problem known as degeneration. For instance, in open-ended generation tasks, such as story
continuation or open dialogue generation, it has been observed that even with large pre-trained language models (LMs)
like GPT-2 [96], high frequency tokens largely dominate the generation [119]. Similar observation has been reported
in directed generation tasks such as summarization, image captioning and machine translation. In our recent paper
[66], based on the known observation that the text generation models trained with MLE objective tend to generate
repetitive tokens or phrases, we introduce a novel method called ScaleGrad for neural text generation training, by
directly maneuvering the gradients to make the model learn to use novel tokens during training. Our method is training
based (as opposed to decoding), which aims to address the fundamental modeling problem, that is, the token-level
distribution predicted by the generation model. We conduct experiments with different neural architectures including
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LSTM and Transformer across different tasks in opened-ended and directed text generation. Through extensive analysis
we demonstrate that ScaleGrad consistently improves the generation quality according to both human evaluation and
automatic metrics. Compared to other training based methods, ScaleGrad is architecturally simpler and easier to fit into
current neural models, while possessing a wide applicability to different text generation tasks.

For directed generation tasks aimed at recovering the source message either fully or a compressed version of it (e.g.,
summarization, MT), a major shortcoming of the existing encoder-decoder architectures is that they could keep covering
some parts in the source while ignoring the other important concepts, thus resulting in less comprehensive coverage.
Existing methods for improving the neural coverage either require extra parameters and loss to furnish the model
with better learning capacity or place a specific bound on the sum of attention scores. On the other hand, monotone
nondecreasing submodular objectives have been shown to be ideal for content selection in extractive text summarization
and statistical MT [65]. Despite their appropriateness, submodular functions for content selection have so far been
ignored in neural text generation models. In our work [29], we define a class of novel attention mechanisms called
diminishing attentions with submodular functions and in turn, prove the submodularity of the effective neural coverage.
The submodular maximization problem is generally approximated by greedy selection. However, it is not suited to
optimizing attention scores in auto-regressive generation systems. We therefore put forward a simplified yet principled
and empirically effective solution. By imposing submodularity on the coverage enforced by the decoder states on the
encoder states, our diminishing attention method enhances the model’s awareness of previous steps, leading to more
comprehensive overall coverage of the source and maintaining a focus on the most important content when the goal is
to generate a compressed version of the source (e.g., text summarization). We further enhance our basic diminishing
attention and propose dynamic diminishing attention to enable dynamically adapted coverage. Our results highlight
the benefits of submodular coverage. Our diminishing attention mechanisms achieve SoTA results on three diverse
directed text generation tasks, abstractive summarization, neural machine translation (NMT) and image-paragraph
generation spanning across two modalities, three neural architectures and two training strategy variations.

3.2 Other Related Research on Text Generation

Transfer Learning for Summarization Recent advances in summarization have been mostly driven by the avail-
ability of large-scale datasets and by the introduction of large pretrained models. Creating data for every new domain
is infeasible and expensive. Thus, the ability to transfer large pretrained models to new domains with little or no
in-domain data is desirable, especially as such models make their way into real-world applications. In [17], we build
on recent work in pretrained models and improve its zero- and few-shot capability by encoding characteristics of the
target summarization dataset in unsupervised, intermediate fine-tuning data. We view the summarization process as a
function of subaspects, which determine the output. We focus on the subaspects of extractive diversity, determined by
how well an extractive model performs on the data, compression ratio between the source document and summary, and,
the lead bias for news domains. We assume knowledge of the target domain such as the size of input documents and the
desired summaries, and the abstractiveness of summaries, all of that can be treated as prior knowledge if the task is
to be well-defined. We propose WikiTransfer, where we encode this knowledge into Wikipedia data by extracting
pseudo-summaries of the desired length and filtering examples based on the desired level of abstraction. We use this
(unsupervised) data to fine-tune a model to learn characteristics of the target dataset. We show that this method improves
zero-shot domain transfer over transfer from other domains, achieving SoTA in unsupervised abstractive summarization.
We also demonstrate the benefits of WikiTransfer in few-shot settings, and show additional improvements when applying
it with data augmentation and a regularization term for training with potentially noisy augmented data. We show
robustness in these settings and analyze differences in performance in both automatic and human assessments.

Early Work on Unsupervised Models for QA & Summarization In my M.Sc. [32], I investigated unsupervised
methods to automatically answer both simple and complex questions. Simple questions (e.g., “Who is the president
of USA?”) require small snippets of text as answers and are easier to answer than complex questions (e.g., “Describe
the after-effects of cyclone Cindy?”) which entail richer information needs and require synthesizing information from
multiple documents. My work on complex QA was published in a JAIR article [12] and in one conference paper [11]. I
approached the task as a query-focused multi-document summarization and employed an extractive approach to select a
subset of the original sentences as the answer. I experimented with one simple vector space model and two statistical
unsupervised models for computing the importance of the sentences. The performance of these approaches depends
on the features used and the weighting of these features. I extracted different kinds of informative features for each
sentence, and use a gradient descent search to learn the feature-weights from a development set. I first showed that the
tree kernel features based on the syntactic and shallow semantic trees of the sentences improve the performance of
these models significantly, then I showed that with a large feature set and the optimal feature-weights, my unsupervised
models perform as good as SoTA systems with the advantage of not requiring any human annotated data for training.
In a separate but related work [10], I show that the syntactic and shallow semantic tree kernels can also improve the
performance of the random walk model for answering complex questions.
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3.3 Controllable Generation

Although large-scale LMs are able to learn the distribution of their training set well enough to generate realistic text,
simply imitating the distribution of the training data during generation has many drawbacks; large-scale text training
sets are crawled from the web which is imbued with toxicity, bias, hate, and misinformation. Methods for better
controlling or filtering generation are valuable for making LMs trained on such data safer and more generally useful for
downstream applications. Existing approaches to controlling LMs have limitations. For example, Class-conditional
LMs (CC-LMs) such as CTRL [55] are limited in controlling what not to generate (e.g., toxicity). Another approach is
to use discriminators to steer generation, but existing methods to do this are very computationally intensive.
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Figure 21: An example of how GeDi-guided generation uses
Bayes rule to efficiently compute classification probabilities for
possible next tokens at each generation step with only element-
wise operations. These classification probabilities can then be used
to guide generation from a language model (e.g., GPT-2) to achieve
attribute control across domains.

In [59], we present GeDi as an algorithm for efficiently
guiding generation from large LMs to make them safer
and more controllable. Our proposed method uses CC-
LMs as generative discriminators (GeDis) to guide lan-
guage generation towards desired attributes. We use
GeDis to compute classification likelihoods for all can-
didate next tokens during generation using Bayes rule,
saving many thousand-fold in computation as compared
with using a standard (non-generative) discriminator to
compute this for large vocabulary sizes. We then show
how these likelihoods can guide generation from large
language models via weighted decoding and filtering
(fig. 21). Our experimental results verify the ability of
GeDi to control generation in a variety of settings while
maintaining linguistic quality on par with strong LMs.
GeDi trained on sentiments of movie reviews can gener-
ate book text with a positive or negative tone better than
or equivalently to SoTA baselines. It is able to signifi-
cantly reduce the toxicity of GPT-2 and GPT-3 generation,
without sacrificing linguistic quality. GeDi trained on a dataset of only 4 topics can generalize to new control codes
zero-shot, allowing them to guide generation towards a wide variety of topics. It is also very computationally efficient
for both training and inference compared to existing methods.

4 Robust & Fair NLP

Neural NLP systems have achieved outstanding performance on benchmark datasets. Many of these research advances
have led to production systems for applications like MT, QA, speech recognition, and dialog. However, these models
are only as good as the data they are trained on and they fail catastrophically or amplify discrimination against minority
demographics when exposed to input from outside the training distribution. This lack of robustness exposes concerning
limitations in existing models’ language understanding capabilities, and creates problems when such systems are
deployed to real users. With the aim to make NLP systems robust and ethical, we also work on different aspects of
robust and fair NLP and I describe those in this section.

Figure 22: MORPHEUS looks at each noun, verb, or adjec-
tive in the sentence and selects the inflected form (marked in
red) that maximizes the target model’s loss. To maximize se-
mantic preservation, it only considers inflections belonging
to the same universal part of speech as the original word.

(a) L2 and Dialectal Variations Current NLP models seem
to be trained with the implicit assumption that everyone speaks
fluent (often U.S.) Standard English, even though two-thirds
(>700 million) of the English speakers in the world speak it as
a second language (L2). Even among native speakers, a signif-
icant number speak a dialect like African American Vernacular
English (AAVE) rather than Standard English. These World
Englishes exhibit variation at multiple levels of linguistic anal-
ysis. Therefore, putting these models directly into production
without addressing this inherent bias puts them at risk of com-
mitting linguistic discrimination by performing poorly for many
speech communities (e.g., AAVE and L2 speakers). This could
take the form of either failing to understand these speakers, or
misinterpreting them. For example, the recent mistranslation of
a minority speaker’s social media post resulted in his wrongful
arrest [30].

Since L2 (and many L1 dialect) speakers often exhibit variabil-
ity in their production of inflectional morphology, we argue that
NLP models should be robust to inflectional perturbations in order to minimize their chances of propagating linguistic
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discrimination. Particularly, in [110], we propose MORPHEUS, a method for generating plausible and semantically
similar adversaries by perturbing the inflections in the clean examples (fig. 22). We demonstrate its effectiveness
on multiple machine comprehension and translation models, including BERT and Transformer. We also show that
adversarially fine-tuning the model on an adversarial training set generated via weighted random sampling is sufficient
for it to acquire significant robustness, while preserving performance on clean examples.

Many extant NLP systems use a combination of a whitespace and punctuation tokenizer followed by a data-driven
subword tokenizer such as byte pair encoding (BPE; [104]). However, a purely data-driven approach may fail to find the
optimal encoding, both in terms of vocabulary efficiency and L2/dialectal generalization. This could make the neural
NLP systems more vulnerable to inflectional perturbations. In our follow-up work [111], we propose Base-InflecTion
Encoding or BITE, which uses morphological information to help the data-driven tokenizer use its vocabulary efficiently
and generate robust token sequences. In contrast to morphological segmentors, we reduce inflected forms to their
base forms before reinjecting the inflection information into the encoded sequence as special symbols. This approach
gracefully handles the canonicalization of words with nonconcatenative morphology while generally allowing the
original sentence to be reconstructed. We demonstrate its effectiveness at making NLP systems robust to non-standard
inflection use while preserving performance on Standard English examples. Crucially, simply fine-tuning the pretrained
model for the downstream task after adding BITE is sufficient. Unlike adversarial training, BITE does not enlarge the
dataset and is more computationally efficient. We also show that BITE helps BERT generalize to dialects unseen during
training and also helps Transformer-big converge faster for MT tasks.

(b) Robustness to Code-mixing As mentioned (§2), the massive multilingual models have demonstrated impressive
cross-lingual transfer abilities: simply fine-tuning them on task data from a high resource language such as English after
pretraining on monolingual corpora was sufficient to manifest such abilities. However, transferring from one language
to another is insufficient for NLP systems to understand multilingual speakers in an increasingly multilingual world. In
many multilingual societies, it is common for multilingual interlocutors to produce sentences by mixing words, phrases,
and even grammatical structures from the languages in their repertoires, a phenomenon known as code-mixing. Hence,
it is crucial for NLP systems serving multilingual communities to be robust to code-mixing if they are to understand
and establish rapport with their users or defend against adversarial polyglots. Although gold standard data is important
for definitively evaluating code-mixed text processing ability, such datasets are expensive to collect and annotate.

(a) Aligned words across sentences

(b) Extracted candidate perturbations

(c) Final multilingual adversary

Figure 23: BUMBLEBEE’s three key stages of ad-
versary generation: (a) Align words in the matrix
(English) and embedded sentences (top: Indonesian,
bottom: Chinese); (b) Extract candidate perturbations
from embedded sentences; (c) Construct final adver-
sary by maximizing the target model’s loss.

In our recent work [111], we posit that performance on appro-
priately crafted adversaries could act as a lower bound of a
model’s ability to generalize to the distribution simulated by
said adversaries. We propose two strong black-box adversarial
attacks targeting the cross-lingual generalization ability of mas-
sive multilingual representations (fig. 23), demonstrating their
effectiveness on SoTA models for NLI and QA. We also pro-
pose an efficient adversarial training scheme that takes the same
number of steps as standard supervised training and show that
it creates more language-invariant representations, improving
accuracy in the absence of lexical overlap.

(c) Reliability Testing Rigorous testing is critical to ensuring
an NLP system works as intended (functionality) when used
under real-world conditions (reliability). A lack of rigorous test-
ing, coupled with machine learning’s (ML) implicit assumption
of identical training and testing distributions, may inadvertently
result in systems that are harmful and discriminate against mi-
norities, who are often underrepresented in the training data.
This can take the form of misrepresentation of or poorer per-
formance for people with disabilities, specific gender, ethnic,
age, or linguistic groups. Examples include GPT-3 agreeing
with suggested suicide [97], the mistranslation of an innocuous
social media post resulting in a minority’s arrest [30], and bi-
ased grading algorithms that can negatively impact a minority
student’s future [18]. Many of such potential harms can be
mitigated by detecting them early and preventing the offending
model from being put into production. Hence, in addition to
being mindful of the biases in the NLP pipeline and holding
creators accountable via audits, in our position paper [109], we argue for the need to evaluate an NLP system’s reliability
in diverse operating conditions. We reformulate adversarial attacks as dimension-specific, worst-case tests that can be
used to approximate real-world variation. We contribute a reliability testing framework — DOCTOR — that translates
safety and fairness concerns of NLP systems into quantitative tests. We demonstrate how testing dimensions for
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DOCTOR can be drafted for a specific use case. Finally, we discuss the policy implications, challenges, and directions
for future research for reliability testing.

(d) Robustness of NMT to Natural Noise It has been shown that NMT models are quite brittle against small input
perturbations. Real noises can exhibit in many forms such as spelling and grammatical errors, homophones replacement,
new words or even a valid word used in a less or unfamiliar context. In the presence of such noise, not only can the word
embeddings of perturbations cause irregularities with the local context, but the contextual representation of other words
may also get affected, a process we call noise propagation. In [120], we propose a method called Context-Enhanced
Reconstruction (CER) to minimize this noise propagation and reduce the irregularities in contextual representation.
To reduce the sensitivity of contextual words towards noisy words in the encoder, we inject made-up words randomly to
the source side of the training data to break the text naturalness. We then use a Noise Adaptation Layer (NAL) to enable
a more stable contextual representation by minimizing the reconstruction loss. In the decoder, we add perturbations
with a semantic constraint and apply the same reconstruction loss. Unlike adversarial examples which are crafted to
cause the target model to fail, our perturbation process does not have such a constraint and does not rely on a target
model. Our input perturbations are randomly generated, representing any types of noises that can be observed in
real-world usage. This makes the perturbation process generic, easy and fast. Experimental results on Chinese-English
and French-English translation show significant improvements over the baselines for various domains.

5 Interdisciplinary Research

In addition to my own NLP research, I have been collaborating with researchers from other disciplines. These include
computer vision (§5.1), speech (§5.4), social computing (§5.2), database and data mining (§5.3), and health (§5.5).

5.1 Multimodal (Image-Text) NLP

Vision and language are two of the most fundamental channels for humans to perceive the world and to act based on
that. It has been a long-standing goal in AI to build machines that can jointly understand (and generate) vision and
language data. Our work on multi-modal NLP spans learning general purpose cross-modal representations (§5.1.1) for
visual-language tasks and improving the visual-language tasks with novel methods (§5.1.2).

5.1.1 Multimodal Representation Learning

Figure 24: Framework of ALBEF.

Vision-and-language pre-training (VLP) has emerged to
be an effective approach to learn general purpose vision-
language representations. However, existing methods have
several limitations. They lack the ability to model complex
and fine-grained interactions between image and text. Most
methods rely on a pre-trained object detector for image
feature extraction, which is both annotation-expensive and
computation-expensive. Finally, the datasets used for pre-
training mostly consist of noisy image-text pairs collected
from the Web. The widely used pre-training objectives
such as masked language modeling (MLM) are prone to
over-fitting to the noisy text.

In our NeurIPS-21 work [63], we propose ALign BEfore Fuse (ALBEF), a new vision-language representation learning
framework to address the above limitations (fig. 24). ALBEF contains a transformer-based image encoder and a text
encoder (first 6 layers of BERT), and a multimodal encoder (last 6 layers of BERT with additional cross-attention layers).
We pre-train ALBEF by jointly optimizing three objectives: (i) an image-text contrastive loss to align the unimodal
representations of an image-text pair before fusion, (ii) an image-text pairwise matching loss at the multimodal encoder
(using in-batch hard negatives mined through contrastive similarity), and (iii) an MLM loss at the multimodal encoder.
To learn from noisy data, we propose momentum distillation, where we use a momentum model (a moving-average
version of the base model) to generate pseudo-targets (additional supervision) for both image-text contrastive learning
and masked language modeling. We also provide theoretical explanations from the perspective of mutual information
maximization, showing that momentum distillation can be interpreted as generating views for each image-text pair.
ALBEF achieves state-of-the-art performance on multiple vision-language downstream tasks such as image-text retrieval,
visual question answering (VQA), and natural language visual reasoning (NLVR).

Self-supervised Visual Relationship Learning. Visual graph representations such as scene graphs that describe
object relationships in images have become crucial for high-level computer vision tasks that need complex reasoning
such as image captioning, image retrieval and visual reasoning. Despite great progress, current visual relationship
models still rely on human-annotated relationship labels. Due to the combinatorics involved — two objects and one
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Figure 25: Overview of the three proposed types of SSRP frameworks, each of which consists of three types of modules:
intra-modality encoder, inter-modality encoder and relationship probe.

relationship between them, where objects and relationships each have different types — relationships are numerous and
have a long-tailed distribution, and thus, it is difficult to collect enough annotations to sufficiently represent important
but less frequently observed relationships.

In our NeurIPS-20 paper [25], we propose a novel, self-supervised relationship probing (SSRP) method to discover
relations between objects from the model’s representation space (fig. 25). Our approach is based on two simple
observations: (i) when we slightly change the images, the relative visual relations in those images remain unchanged;
(ii) relations mentioned in image descriptions are visually observable in the corresponding image. Our approach relies
on three modules, each consisting of a set of layers. In the first module, implicit intra-modal relationships are modeled
using transformer encoders. In the second module, cross-modal learning allows for implicit relationship information to
be leveraged across modalities. In the third module, relationships between visual and textual entities are represented
explicitly as latent variables via a technique we call relationship probe. All modules are trained using self-supervision,
with a first stage relying on masked LM to train the first two modules, and a second stage relying on contrastive learning
and linguistic dependency trees as supervisory signals to train the relationship probe network. Our approach addresses
issues with existing visual relationship models: it relies on self-supervision rather than explicit supervision, it explicitly
models relationships as latent variables, and it leverages cross-modal learning but allows a single modality as input
at prediction time. Our experiments demonstrate that our method can benefit both vision and vision-language tasks
including Natural Language for Visual Reasoning (NLVR), Visual QA (VQA, GQA), and image captioning.

5.1.2 Visual-Language Tasks

(a) Cross-modal Retrieval. Cross-modal retrieval is the task to retrieve the images (resp. texts) that are relevant to a
given textual (resp. image) query. The fundamental challenge in this task is to learn a common representation shared by
data from different modalities. The common approach to learning such cross-modal embedding space is to first encode
individual modalities into their respective features, and then map them into a common semantic space, which is often
optimized via a ranking loss that encourages the similarity of the mapped features of ground-truth image-text pairs to
be greater than that of any other negative pair. Although the feature representations in the learned common space have
been successfully used to describe high-level semantic concepts of multi-modal data, they are not sufficient to retrieve
images with detailed local similarity (e.g., spatial layout) or sentences with word-level similarity.

Figure 26: Conceptual illustration of our cross-modal fea-
ture embedding with generative models. The cross-modal
retrievals (Image-to-Text & Text-to-Image) are shown in dif-
ferent colors. The two blue boxes are cross-modal data, and
the generated data are shown in two dashed yellow clouds.

In our CVPR-18 paper [22], we propose to incorporate gener-
ative models into textual-visual feature embedding for cross-
modal retrieval. In particular, in addition to the conventional
cross-modal feature embedding at the global semantic level,
we also introduce an additional cross-modal feature embed-
ding at the local level, which is grounded by two generative
models: image-to-text and text-to-image. Figure 26 illustrates
the concept of our proposed cross-modal feature embedding
with generative models at high level, which includes three
learning steps: look, imagine, and match. Given a query in
image or text, we first look at the query to extract an abstract
representation. Then, we imagine what the target item (text
or image) in the other modality should look like, and get a
more concrete grounded representation. We accomplish this
by asking the representation of one modality (to be estimated)
to generate the item in the other modality, and comparing the
generated items with gold standards. After that, we match
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the right image-text pairs using the relevance score which is calculated based on a combination of grounded and
abstract representations. We conduct extensive experimentations on the benchmark dataset, MSCOCO. Our empirical
results demonstrate that the combination of the grounded and abstract representations can significantly improve the
state-of-the-art performance on cross-modal image-caption retrieval.

(b) Image Captioning. Despite the impressive results achieved by deep learning in automatic image captioning, one
performance bottleneck is the availability of large paired datasets because neural image captioning models are generally
annotation-hungry, requiring a large amount of annotated image-caption pairs to achieve effective results. However, in
many applications and languages, such large-scale annotations are not readily available, and are expensive and slow to
acquire. In these scenarios, unsupervised methods that can generate captions from unpaired data or semi-supervised
methods that can exploit paired annotations from other domains or languages are highly desirable. In our ECCV-18
paper [23], we pursue the latter research avenue, where we assume that we have access to image-caption paired
instances in one language (Chinese), and our goal is to transfer this knowledge to a target language (English) for which
we do not have such image-caption paired datasets. We also assume that we have access to a separate source-target
(Chinese-English) parallel corpus to help us with the transformation. In other words, we wish to use the source language
(Chinese) as a pivot language to bridge the gap between an input image and a caption in the target language (English).

Figure 27: Illustration of our image captioning model with a pivot
language. It first transforms an image into latent pivot sentences, from
which our machine translation model generates the target caption.

The concept of using a pivot language (usually high-
resource like English) as an intermediary language
has been studied previously in machine translation
(MT). Although related, image captioning with the
help of a pivot language is fundamentally differ-
ent from MT, since it involves putting together two
different tasks – captioning and translation. In addi-
tion, the pivot-based pipelined approach to MT suf-
fers from two major problems when it comes to im-
age captioning. First, the conventional pivot-based
MT methods assume that the datasets for source-to-
pivot and pivot-to-target translations come from the
same (or similar) domain(s) with similar styles and
word distributions. However, as it comes to image captioning, captions in the pivot language (Chinese) and sentences in
the (Chinese-English) parallel corpus are quite different in styles and word distributions. Second, the errors made in the
source-to-pivot translation get propagated to the pivot-to-target translation module in the pipelined approach.

In [23], we present an approach that can effectively capture the characteristics of an image captioner from the source
language and align it to the target language using another source-target parallel corpus (fig. 27). Specifically, our
pivot-based image captioning framework comprises an image captioner image-to-pivot, an encoder-decoder model
that learns to describe images in the pivot language, and a pivot-to-target translation model, another encoder-decoder
model that translates the sentence in the pivot language to the target language, and these two models are trained on two
separate datasets. We tackle the variations in writing styles and word distributions in the two datasets by adapting the
language translation model to the captioning task. This is achieved by adapting both the encoder and the decoder of
the pivot-to-target translation model. In particular, we regularize the word embeddings of the encoder (of the pivot
language) and the decoder (of the target language) models to make them similar to image captions. We also introduce a
joint training algorithm to connect the two models and enable them to interact with each other during training. The
results show that our approach yields substantial gains over the baselines.

Figure 28: Illustration of our graph-based image captioning
method. Our model consists of one visual scene graph detec-
tor (Top-Left), one fixed off-the-shelf scene graph language parser
(Bottom-Left), a scene graph encoder GS

Enc, a sentence decoder
GS

Dec, and a feature mapping module.

Inspired by the success of unsupervised MT, in our later
(ICCV-19) work [24], we focus on unsupervised (or un-
paired) image captioning. However, unlike unsupervised
neural MT (§2.1.2) where the encoders can be shared
across source and target languages, due to the different
structures and characteristics of image and text modali-
ties, the encoders of image and sentence cannot be shared
to connect the two modalities. The critical challenge in
unpaired image captioning is therefore the gap of infor-
mation misalignment in images and sentences, so as to
fit the encoder-decoder framework. To address this, we
propose a scene graph based method that exploits the
rich semantic information captured by scene graphs. Our
framework comprises an image scene graph generator, a
sentence scene graph generator, a scene graph encoder,
a sentence decoder, and a feature alignment module that
maps the features from image to sentence modality (fig. 28). We first extract the sentence scene graphs from the
sentence corpus and train the scene graph encoder and the sentence decoder on the text modality. To align the scene
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graphs between images and sentences, we use CycleGAN to build the data correspondence between the two modalities.
Specifically, given the unrelated image and sentence scene graphs, we first encode them with the scene graph encoder
trained on the sentence corpus. Then, we perform unsupervised cross-modal mapping for feature level alignments with
CycleGAN. By mapping the features, the encoded image scene graph is pushed close to the sentence modality, which
is then used effectively as input to the sentence decoder to generate meaningful sentences. Our experimental results
demonstrate the effectiveness of our proposed model in producing quite promising image captions. The comparison
with recent unpaired image captioning methods validates the superiority of our method.

(c) Image Change Captioning. Inspired by the research development from dense object detection to image captioning,
which generates natural language descriptions (instead of object labels) to describe the salient information in an image,
the change captioning task has recently been proposed to depict the salient differences between images. Arguably,
captions describing the changes are more accessible (hence preferred) for users, compared to the map-based labels
(e.g., pixel-level binary maps as change labels). Despite the progress, the existing change captioning methods cannot
handle the viewpoint change properly. As shown in fig. 30, the viewpoint change in the images can overwhelm the
actual object change leading to incorrect captions. Handling viewpoint changes is more challenging as it requires the
model to be agnostic of the changes in viewpoints from different angles, while being sensitive to other salient changes.

Figure 29: Current change captioning methods can be influenced by the
viewpoint change between image pairs, which results in generating wrong
captions. To address this problem, we propose a novel framework that aims
at explicitly separating viewpoint changes from real changes.

In our ECCV-20 paper [107], follow-
ing the prevailing architecture of a vi-
sual encoder plus a sentence decoder, we
propose a novel viewpoint-agnostic im-
age encoder, called Mirrored Viewpoint-
Adapted Matching (M-VAM) encoder,
for the change captioning task. Our main
idea is to exhaustively measure the fea-
ture similarity across different regions
in the two images so as to accurately
predict the changed and unchanged re-
gions in the feature space. The changed
and unchanged regions are formulated
as probability maps, which are used to
synthesize the changed and unchanged
features. We further propose a Reinforcement Attention Fine-tuning (RAF) process to allow the model to explore other
caption choices by perturbing the probability maps. Our model outperforms the SoTA change captioning methods by a
large margin in both Spot-the-Diff and CLEVR-Change datasets. Extensive experimental results also show that our
method produces more robust prediction results for the cases with viewpoint changes.

Figure 30: Overall idea of the proposed video refocusing encoder. Top:
video captioning with forward and backward video encoding. Bottom: the
proposed key frame based video encoding.

(d) Video Captioning. Different from image
captioning, in the video captioning task, tem-
poral information is more significant since the
actions, event dynamics, and the surroundings
in a video can hardly be fully represented by a
single image. Prior methods mainly focus on
encoding the temporal relationship in a video to
predict a correct sentence, where the spatial fea-
ture of a frame is typically aggregated or pooled
into one feature vector representing the frame;
it is also computationally prohibitive to keep all
the spatial features for all the frames. An RNN
is used to compose the sequence of the frame
features into a video representation, followed
by another RNN as a language decoder to generate the words. Despite its success, the Seq2Seq based video captioning
methods still suffer from some key limitations. First, existing methods assume that a video only narrates a single story
and has few scenery changes, and thus they usually apply an RNN encoder to encode a video along the forward direction
(from start to end), or the backward direction, or both. In the presence of noisy information at the beginning/end of a
sequence, this approach will have a negative influence on encoding the key information that appears after/before the
noise (fig. 30). This motivated us to come up with the novel idea: how about watching a video twice: first predict the
key frame and then encode the video based on that? Another key problem is that the models disregard spatial features
of the frames. Without the spatial information, we can hardly distinguish the location of the entities. Thus, to generate
better captions, we need to incorporate spatial information while still limiting the dimensions of the visual features to a
level that is computationally feasible.

In [106], we introduce a novel video captioning model, where we focus on the visual encoding part for generating a
better video representation. We propose a simple spatial feature obtained by average pooling across different frame
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regions and integrate it into the captioning model. To tackle the issues with the noisy frames, we introduce a novel
video refocusing encoder, where we encode each video twice. The first time is to select the key frame of a video by a
key frame prediction network, and the second time is to re-encode the video centered at the key frame by two opposite
directional RNN encoders. With no additional annotation, we further propose a novel reinforcement-learning based
training method to jointly train the video refocusing encoder with the captioning model in an end-to-end manner. We
test out the method on two widely used benchmark video captioning datasets, and we achieve results that rival SoTA
methods and even outperform them in most cases.

In our follow-up work [105], we focus on the language decoding part of the Seq2Seq framework. We found that the
prevailing RNN architectures, such as LSTMs, make mistakes by linking two words that do not appear together in the
video but appear together frequently in the data. For example, “playing” appears often with “man” although it can also
be found infrequently with some other entities, like “dog”, “cat”, and “baby” in other videos. In addition, when a word
(e.g., woman) appears in the data more frequently than another word (e.g., motorcycle), the decoder tends to predict the
former than the latter when both occur in a video, resulting in a caption like “a woman is riding a woman” instead of
“a woman is riding a motorcycle”. We propose a boundary-aware hierarchical language decoder for video captioning.
It consists of a high-level GRU based language decoder, working as a global (caption-level) language model, and a
low-level GRU based language decoder, working as a local (phrase-level) language model. The key novelty lies in the
introduction of a binary gate into the low-level GRU language decoder, named Binary Gated Recurrent Unit (B-GRU),
to detect phrasal boundaries according to language information and feed them back to the high-level language decoder
to generate a global understanding of the currently generated sentence segments. To further improve the performance,
we also incorporate another task of video prediction in a multi-task learning framework with a shared attention model
for the two tasks.

(e) Visual Question Answering (VQA). Most existing methods perform VQA by utilizing the attention mechanism
and combining the features from the two modalities for predicting answers. Although promising performance has been
reported, there is still a huge gap for humans to truly understand the model decisions without any explanation for them.
The visual justification through attention visualization is implicit and it cannot entirely reveal what the model captures
from the attended regions for answering the questions. There could be many cases where the model attends to the right
regions but predicts wrong answers. It has also been shown that attentions can be misleading. What’s worse, the visual
justification is not accessible to visually impaired people who are the potential users of the VQA techniques. Therefore,
in our ECCV-18 paper [64], we explore textual explanations to compensate for these weaknesses of visual attention in
VQA. Another crucial advantage of textual explanation is that it elaborates and enhances the predicted answer with
more relevant information. Unfortunately, although textual explanations are desired for both model interpretation and
effective communication in natural contexts, little progress has been made in this direction, partly because almost all
the public datasets do not provide explanations for the annotated answers.

Figure 31: An example of the pipeline to fuse the question (Q), the answer (A) and the
relevant caption (C) into an explanation (E). Each QA pair is converted into a statement (S). The
statement and the most relevant caption are both parsed into parse trees, which are then aligned
by the common node. The subtree including the common node in the statement is merged into
the caption tree to obtain the explanation.

We address the above limita-
tions of existing VQA systems
by introducing VQA-E (VQA
with Explanations), where the
models are required to pro-
vide a textual explanation for
the predicted answer. We
conduct our research in two
steps. First, to foster research
in this area, we construct a
new dataset with textual expla-
nations for the answers. The
VQA-E dataset is automati-
cally derived from the popular
VQA v2 dataset by synthesiz-
ing an explanation for each image-question-answer triple. The VQA v2 dataset is one of the largest VQA datasets with
over 650k question-answer pairs, and more importantly, each image in the dataset is coupled with five descriptions
from MSCOCO captions. Although these captions were written without considering the questions, they do include
some QA-related information and thus exploiting these captions could be a good initial point for obtaining explanations
free of cost. We further explore several simple but effective techniques to synthesize an explanation from the caption
and the associated question-answer pair (fig. 31). To relieve concern about the quality of the synthesized explanations,
we conduct a comprehensive user study to evaluate a randomly selected subset of the explanations. The user study
results show that the explanation quality is good for most question-answer pairs while being a little inadequate for the
questions asking for a subjective response or requiring common sense. Overall, we believe the newly created dataset is
good enough to serve as a benchmark for the proposed VQA-E task.

To show the advantages of learning with textual explanations, we also propose a novel VQA-E model, which addresses
both the answer prediction and the explanation generation in a multi-task learning architecture. Our dataset enables us
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to train and evaluate the VQA-E model, which goes beyond a short answer by producing a textual explanation to justify
and elaborate on it. Through extensive experiments, we find that the additional supervisions from explanations can help
the model better localize the important image regions and lead to an improvement in the accuracy of answer prediction.
Our VQA-E model outperforms the state-of-the-art methods in the VQA v2 dataset.

5.2 NLP for Social Media

I have worked on tweet classification problems to support crisis situations (§5.2.1), and advised a visiting student for
her work on fact (or claim) verification (§5.2.2).

5.2.1 Crisis Computing

During the onset of a crisis situation (e.g., earthquake, flood), rapid analysis of messages posted on microblogging
platforms such as Twitter can help humanitarian organizations gain situational awareness, learn about urgent needs, and
to direct their decision-making processes accordingly. However, time-critical analysis of such big crisis data brings
challenges to machine learning techniques, especially to supervised learning methods. The scarcity of labeled data,
particularly in the early hours of a crisis, delays the learning process. Traditional approaches use batch learning with
hand engineered features like cue words and TF-IDF vectors. This approach has three major limitations. First, in the
beginning of a disaster situation, there is no labeled data available for training for that particular event. Later, the labeled
data arrives in minibatches depending on the availability of volunteers. Due to the discrete word representations and the
variety across events, traditional classification models perform poorly when trained on previous (out-of-domain) events.
Second, training a classifier from scratch every time a new minibatch arrives is infeasible. Third, extracting the right
features for each disaster related classification task is time consuming and requires domain knowledge.

Deep neural networks (DNNs) are ideally suited for disaster response with big crisis data. They are usually trained with
online learning (e.g., Stochastic Gradient Descent or SGD) and have the flexibility to adaptively learn from new batches
of labeled data without requiring to retrain from scratch. Due to their distributed word representation, they generalize
well and make better use of the previously labeled data from other events to speed up the classification process in the
beginning of a disaster. DNNs obviate the need for manually crafting features and automatically learn latent features as
distributed dense vectors, which generalize well.

(a) Supervised Model. In [87, 86], we proposed convolutional neural networks (CNN) for the classification tasks in
a disaster situation. CNN captures the most salient n-gram information by means of its convolution and max-pooling
operations. On top of the typical CNN, we propose an extension that combines multilayer perceptron with a CNN.
We present a series of experiments using different variations of the training data – event data only, out-of-event data
only and a concatenation of both. Experiments are conducted for binary (useful vs. not useful) and multi-class (e.g.,
donations, sympathy, casualties) classification tasks. Empirical evaluation shows that our CNN models outperform
non-neural models by a wide margin in both classification tasks in all scenarios. In the scenario of no event data, the
CNN model shows substantial improvement of up to 10 absolute points over several non-neural models. Our variation
of the CNN model with multilayer perceptron performed better than its CNN-only counter part. Another finding is
that blindly adding out-of-event (a prior crisis event) data either drops the performance or does not give any noticeable
improvement over the event only model. To reduce the negative effect of large out-of-event data and to make the most
out of it, we apply two simple domain adaptation techniques – (i) weight the out-of-event labeled tweets based on
their closeness to the event data, (ii) select a subset of the out-of-event labeled tweets that are correctly labeled by the
event-based classifier. Our results show that the latter results in a better classification model.
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Figure 32: Architecture of the domain adversarial network with
graph-based semi-supervised learning. The shared components
part is shared by supervised, semi-supervised and domain classifier.

(b) Semi-supervised Domain-adapted Model. Al-
though obtaining a large amount of labeled data at the
beginning of a crisis event (e.g., Earthquake) is infeasible
to train an effective DNN-based classifier, in most cases,
we can have access to a good amount of labeled and abun-
dant unlabeled data from past similar events (e.g., Floods)
and event-specific unlabeled data. In such situations, we
need methods that can leverage the labeled and unlabeled
data in a past event (we refer to this as a source domain),
and that can adapt to a new event (we refer to this as
a target domain) without requiring any labeled data in
the new event. In other words, we need models that can
do domain adaptation to deal with the distribution drift
between the domains and semi-supervised learning to
leverage the unlabeled data in both domains.

In our follow-up work [3, 4], we extend our method pro-
posed in [86], proposing a novel model that performs
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domain adaptation and semi-supervised learning within
a single unified deep learning framework (fig. 32). In this framework, the basic task-solving network (a CNN in our
case) is put together with two other networks – one for semi-supervised learning and the other for domain adaptation.
The semi-supervised component learns internal representations (features) by predicting contextual nodes in a graph
that encodes similarity between labeled and unlabeled training instances. The domain adaptation is achieved by using
a domain discriminator, which is a binary classifier that tries to decide whether the input example comes from the
source or from the target domain. The training of this domain discriminator network is adversarial with respect to
the shared layers by using gradient reversal during backpropagation, which makes the training maximize the loss
of the discriminator rather than to minimize it. The overall idea is to learn high-level abstract representation that is
discriminative for the main classification task, but is invariant across the domains. We propose an SGD algorithm to
train the components of our model simultaneously. The effectiveness of the proposed approach is shown using two
real-world Twitter datasets on scenarios where there is only unlabeled data in the target domain (or event).

5.2.2 Fact Checking (Rumor Detection)

The increasing popularity of social media has drastically changed how our daily news is produced, disseminated and
consumed. The latest Pew Research statistics show that 70% of American adults at least occasionally get news on
social media.5 Without systematic moderation, a large volume of information based on false or unverified claims (e.g.,
fake news, rumors, propaganda, etc.) can proliferate online. Such misinformation poses unprecedented challenges
to information credibility, which traditionally relies on fact-checkers to manually assess whether specific claims are
true or not. Despite the increased demand, the effectiveness and efficiency of human fact-checking is handicapped by
the volume and fast pace of the noteworthy claims being produced on a daily basis. Therefore, it is an urgent need to
automate the process and ease the human burden in assessing the veracity of claims.

Earlier approaches to automatic fact verification (or rumor detection) use recurrent neural networks (RNN) to capture
the dynamic temporal characteristics of rumor diffusion. This method however oversimplifies the structural information
associated with message propagation that can provide useful clues indicative of rumors. Propagation structures have
been shown to be conducive to false rumor detection. In our work [75], we propose a tree-structured recursive
neural network (RvNN) based on rumor propagation tree structures. The semantics of post content and the response
relationships among the posts are jointly captured in the RvNN via the recursive feature learning process along the tree
structure.

(a) False rumor (b) True rumor

Figure 33: Propagation trees of two rumorous source tweets. Nodes
may express stances on their parent as commenting, supporting,
questioning or denying. The edge arrow indicates the direction
from a response to its responded node, and the polarity is marked
as ‘+’ (‘-’) for support (denial). The same node color indicates the
same stance on the veracity of the root node (i.e., source tweet).

To illustrate our intuition, Figure 40 exemplifies
the propagation trees of two rumors in our dataset,
one being false and the other being true. Structure-
insensitive methods typically relying on the rel-
ative ratio of different stances in the text cannot
do well when such aggregated relativity is unclear
as in this example. However, it can be seen that
when a post denies a false rumor, it tends to spark
supportive or affirmative replies confirming the
denial; in contrast, denial to a true rumor tends to
trigger questioning or denying utterances in the
replies. This observation suggests a more general
hypothesis that the repliers tend to disagree with
(or question) those who support a false rumor or
deny a true rumor, and agree with those who deny
a false rumor or support a true rumor. Meanwhile,
rather than directly responding to the source post
(i.e., the root post), a reply is usually responsive
to its immediate ancestor, suggesting an obvious local characteristic of the interaction. The RvNN model naturally
utilizes such structural properties for learning to capture rumor indicative signals and strengthen the representations by
recursively aggregating the signals along different branches.

We propose two variants based on the standard RvNN, i.e., a bottom-up (BU) model and a top-down (TD) model, which
represent the propagation tree structure from two different angles, in order to recursively visit the nodes and combine
their representations following distinct directions. With such basic architectures, the node features can be hierarchically
refined by the recursion following the tree structure. Consequently, it can be expected that the discriminative features
will be embedded into the learned representations more effectively. However, a potential issue of this model is that
all responding posts are treated equally during the recursion, which may amplify the noise in the tree-structured
representation learning. For example, the commenting posts in Figure 40 should have been less important due to their
weak opinions towards the source claim. Previous studies have found that rumor detection can benefit from taking into

5https://www.pewresearch.org/internet/2021/04/07/social-media-use-in-2021/
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account the different stances expressed in responding posts. In this work, we introduce a novel method to improve
our basic RvNN-based models by learning to automatically attend on those most evidential posts that express specific
stances. Inspired by the success of neural attention, we propose specific attention mechanisms to encourage our model
to be focused on such responsive posts in the tree during the bottom-up/top-down recursion.

c: The test of a 5G cellular network is the cause of
unexplained bird deaths occurring in a park in
The Hague, Netherlands.
Verdict: False

s1: [Contradict]: Lots of tests going on with it in the
Netherlands, but there haven’t been test done in
The Haque during the time that the mysterious
starling deaths occurred.

s2: [Contradict]: One such test did occur in an area
generally near Huijgenspark, but it took place on
28 June 2018.

s3: [Entail]: It’s not clear whether tests with 5G
have been carried out again, but so far everything
points in the direction of 5G as the most probable
cause.

s4: [Neutral]: Between Friday, 19 Oct and Satur-
day, 3 Nov 2018, 337 dead starlings and 2 dead
common wood pigeons were found.

s5: [Entail]: The radiation created on the attempt
of 5G cellular networks are not harmful only for
birds but also for humans too.

s6: [Neutral]: 5G network developers promise faster
data rates in addition to reduce energy and finan-
cial cost.

s7: [Neutral]: Parts of the park are blocked and dogs
are no longer allowed to be let out, the dead birds
are always cleaned up as quickly as possible.

Figure 34: Sentences topically coherent (s1–s4) and not coherent
(s5–s7) with each other relative to the claim c, where their semantic
entailment relations with c are shown.

We conduct extensive experiments on four real-world mi-
croblog datasets of different languages and demonstrate
that 1) the proposed RvNN-based method yields outstand-
ing improvements over the state-of-the-art baselines by
a large margin; 2) the attention on most evidential posts
over the propagation tree is effective; and 3) our method
performs particularly well on early rumor detection which
is crucial for timely intervention and debunking.

A recent trend in automatic fact verification is to establish
more objective tasks and evidence-based verification
solutions, which focus on the use of evidence obtained
from more reliable sources, e.g., encyclopedia articles,
verified news, etc., as an important distinguishing fac-
tor. In the Fake News Challenge6, the body text of an
article is used as evidence to detect the stances relative
to the claim made in the headline. The Fact Extraction
and VERification (FEVER) task requires extracting evi-
dence from Wikipedia and synthesizing information from
multiple documents to verify the claim. Along the same
line, in our work [74], we propose an approach to claim
verification by using representation learning to embed
sentence-level evidences based on coherence modeling
and natural language inference (NLI).

The example in Figure 34 illustrates our general idea:
given a claim and its relevant articles, we try to embed
into the claim-specific representation those evidential sen-
tences (e.g., s1–s4) that are not only topically coherent
among themselves considering the claim, but could also
semantically infer the claim based on textual entailment
relations such as entail, contradict, and neutral. We hypothesize that sentence-level evidence can convey more complete
and deeper semantics, thus providing stronger NLI capacity between claim and evidence, which would result in better
claim-specific representations for more accurate fact-checking decisions. To this end, we propose an end-to-end
hierarchical attention network for sentence-level evidence embedding that aims to attend on important sentences (i.e.,
evidence) by considering their topical coherence and semantic inference strength. Our model can determine the verdict
of a claim more reasonably with evidential sentences embedded into the learned claim representation. Meanwhile, with
the help of attention, crucial evidence can be highlighted and referred for better interpretability of the verdict. We use a
co-attention mechanism to model sentence coherence and integrate the coherence- and entailment-based attentions into
our proposed hierarchical attention framework for better evidence embedding. We experimentally confirm that our
method is much more effective than several SoTA claim verification models using three public benchmark datasets.

5.3 NLP for Database & Data Mining

5.3.1 Deep Entity Resolution

Entity resolution (ER), a fundamental problem in data integration, has been extensively studied for 70+ years, from
different aspects and in many domains such as health care, e-commerce, data warehouses, and many more. Despite the
great efforts, there is still a long journey ahead in democratizing ER. Adding to the difficulty is the rapidly increasing
size, number, and variety of sources of big data. A typical ER pipeline consists of four main steps: (i) labeling entity
pairs as either matching or non-matching pairs; (ii) learning rules/ML models using the labeled data; (iii) blocking for
reducing the number of comparisons; and (iv) applying the learned rules/ML models.

The major challenge of current solutions in democratizing ER is that each step needs human-in-the-loop. Even a
“simple” step, such as step i, which is thought to be trivial, turned out to be difficult in practice. Moreover, the human
resources required in each step might be different – knowing what (step i) is easier than telling why (step ii) or how (step
iii). In practice, step i is tedious because humans can only label up to several hundred (or a few thousand) entity pairs

6http://www.fakenewschallenge.org/
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and are error-prone. Intuitively, the hope to reduce this effort is to have a “prior knowledge” about what values would
most likely match. Regardless of using rule- or ML-based methods, step ii requires experts to provide (domain-specific)
similarity functions from a large pool (e.g., SimMetrics). In addition, experts may also need to specify the thresholds.
Ideally, this step needs a unified metric that can decide different cases of matched entities, from both syntactic and
semantic perspectives. For step iii, a blocking function is typically defined over a few attributes, e.g., country and gender
in a table about demographic information, without a holistic view over all attributes or the semantics of the entities.
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Figure 5: Deep Entity Resolution Framework

respectively. If one can find an analogous vast corpus
of domain information in the form of unstructured data
such as documents, it could be used to learn the word
embeddings for this specialized dataset. For example, while
word embeddings from GloVe might not know that p53
and cancer are related, the word embeddings trained from
PubMed articles would be able to. Similarly, one could
learn word embeddings from the enterprise’s document
repository for ER on data in the same organization.

(3) Customized Word Embeddings. In some cases, it is pos-
sible that direct application of GloVe or word2vec does not
solve the problem. For example, when given a huge amount
of training they might not find if, for example, two strings
encode the same protein. In such cases, one has to check if
there exist prior methods for learning word embeddings for
the task of interest. For example, there exist prior work on
word embeddings for proteins and genes from sequences of
amino acids and DNA respectively [3].

Of course, the worst case scenario is a specialized database
where no auxiliary resources are available to automatically
learn the representation for key concepts. In this scenario,
any machine learning approach is doomed to fail unless one
provides hand crafted features or a substantially large num-
ber of training examples that are su�cient for learning rep-
resentations using deep learning.

3.4 Tuning Word Embeddings for an ER Task
Recall that word embeddings such as GloVe/word2vec are

learned in an unsupervised task-agnostic manner so that
they can be used for arbitrary tasks. If the corpus used to
train them is large and representative enough, the learned
word embeddings can be used in a turn-key manner for ER
tasks. While unsupervised pre-training on a large corpus
does give the DL model better generalization, in many cases
the learned representations often lack task-specific knowl-
edge. One can achieve the best of both worlds by fine-tuning
the pre-trained word representations to achieve better accu-
racy. In fact, this paradigm of unsupervised pre-training
followed by supervised fine-tuning often beats methods that
are based on only supervision [15].

Our proposed approach can be easily extended for this
purpose. Let us now consider our deep neural network in
Figure 5. We train this network using Stochastic Gradient
Descent (SGD) based learning algorithms, where gradients
(errors) are obtained via backpropagation. In other words,

errors in the output layer (i.e., the classification layer) are
backpropagated through the hidden layers using the chain
rule of derivatives. The parameters of the hidden layers
are slightly altered such that when the model accuracy im-
proves. For learning or fine-tuning the embeddings, we allow
these errors to be backpropagated all the way till the word
embedding layer. In contrast, our approach from Section 2
can only tune parameters up to the composition layer. Al-
lowing error to be back propagated to the embedding layer
allows one additional level of freedom to tinker model pa-
rameters. Instead of limiting ourselves to how the attributes
are composed or how similarity is computed, we can also
modify the word embeddings themselves (if necessary).

One common issue with backpropagation through a deep
neural network (i.e., neural networks with many hidden lay-
ers such as RNNs) is that as the errors get propagated,
they may soon become very small (a.k.a. gradient vanishing
problem) or very large (a.k.a. gradient exploding problem)
that can lead to undesired values in weight matrices, causing
the training to fail [7]. We did not observe such problems
in our end-to-end training with simple averaging composi-
tional method, and the gates in LSTM cells automatically
tackle these issues to some extent [28].

4. BLOCKING FOR DISTRIBUTED REP-
RESENTATIONS

E�cient ER systems avoid comparing all possible pairs of
tuples (

�
n
2

�
for one table of n⇥m for two tables) through the

use of blocking [4, 12]. Blocking identifies groups of tuples
(called blocks) such that the search for duplicates need to
be done only within these blocks, thus greatly reducing the
search space. While blocking often substantially reduces the
number of comparisons, it may also miss some duplicates
that fall in two di↵erent blocks.

4.1 New Opportunities for Blocking
We observe that blocking is very related to the classical

problem of approximate nearest neighbor (ANN) search in
a similarity space, which has been extensively studied (see
[51]). Locality sensitive hashing (LSH) [29] is a popular
probabilistic technique for finding ANNs in a high dimen-
sional space. In the blocking context, the more similar input
vectors are, the higher the probability that they both will
be put in the same block. While we are not the first to
propose LSH for blocking or automated tuning for blocking
(see Section 6), we are the first to propose a series of truly
turn-key algorithms for blocking.

Challenges in Traditional Blocking Approaches

(i) Identifying good blocking rules often requires the assis-
tance of domain experts.

(ii) Blocking rules often consider few (e.g., 2-3) attributes
which could result in comparing tuples that agree on those
attributes but have very di↵erent values on other attributes.

(iii) Prior blocking methods often do not take semantic sim-
ilarity between tuples into consideration.

(iv) It is usually hard to tune the blocking strategy to control
the recall and/or the size of the blocks.

We can readily see that LSH for blocking over DRs of
tuples obviates many of these issues. First, we free the do-
main experts from providing a blocking function. Instead
the combination of LSH and DRs transforms the problem of
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Figure 35: Deep Entity Resolution Framework.

In [16], we present DeepER, a system for democratiz-
ing ER that needs much less labeled data by considering
prior knowledge of matched values, captures both syntac-
tic and semantic similarities without feature engineering,
and provides an automated and customizable blocking
method that takes a holistic view of all attributes – all of
these targets are achieved by gracefully using distributed
representations (DRs) of tuples. DRs of tuples is an ex-
tension of DRs of words (word embeddings). We present
two methods for effectively computing DRs of tuples by
composing the DRs of all the tokens within all attribute
values of a tuple. The first method is a simple averag-
ing of the tokens’ DRs while the second uses uni- and
bi-directional LSTM to convert each tuple into a DR. We
introduce an end-to-end approach to tune the DRs that
is customized for a specific ER task which improves the
performance of DeepER (fig. 35). We propose two effi-
cient and effective blocking algorithms based on the DRs
for tuples and locality sensitive hashing, which takes the semantic relatedness of all attributes into account. DeepER
shows superior performance compared to a SoTA ER solution as well to published methods on several benchmark
datasets from citations, products, and proteomics. Finally, the proposed blocking delivers outstanding results under
different conditions.

5.3.2 NLG for Database Education

A key learning goal of learners taking a database course is to understand how SQL queries are processed in an RDBMS
in practice. A relational query engine produces a query execution plan (QEP), which represents an execution strategy of
an SQL query. Most commercial RDBMS expose the QEP of an SQL query using visual or textual format (fig. 36).
Unfortunately, comprehending these textual formats to understand the query execution strategies of SQL queries in
practice is daunting for learners. On the other hand, the visual format is relatively more user-friendly but hides important
details. We advocate that an intuitive natural language (NL) description of a QEP can greatly facilitate learners to
comprehend how an SQL query is executed by an RDBMS.

Figure 1: A ��� in PostgreSQL.
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Figure 2: Visual tree representation of the ���.

��� formats. We advocate that in order to promote palatable learn-
ing experiences for diverse individuals in full recognition of the
complexity of ���s in practice, user-friendly tools are paramount.

Example 1.1. Alice is an undergraduate �� student who is cur-
rently enrolled in a database course. She wishes to understand the
execution steps of an ��� query in PostgreSQL on a ����� bench-
mark dataset [12] by perusing the corresponding ��� in Figure 1
(partial view). Unfortunately, Alice �nds it di�cult to mentally con-
struct a narrative of the overall execution steps by simply perusing
it. This problem is further aggravated in more complex ��� queries.
Hence, she switches to the visual tree representation of the ��� as
shown in Figure 2. Although relatively succinct, it simply depicts
the sequence of operators used for processing the query, hiding
additional details about the query execution (e.g., sequential scan,
join conditions). In fact, Alice needs to manually delve into details
associated with each node in the tree for further information.

We advocate that an intuitive natural language-based descrip-
tion of a ��� can greatly facilitate learners to comprehend how
an ��� query is executed by a �����. To support this hypothesis,
we surveyed 62 unpaid volunteers taking the database course in
an undergraduate �� degree program. We use the ����� v2.17.3
benchmark and a rule-based natural language generation tool for
���s [34] to generate natural language (��) descriptions of ���s
for ��� queries formulated by the volunteers. The volunteers were
asked to select their most preferred ��� format (i.e., ���� text, visual
tree, and �� description) that aide in understanding the execution
steps of these queries. Figure 3 depicts the results. Observe that ��
description is the most preferred format. On the other hand, very
few voted for the ���� format supported by PostgreSQL. Also, the
visual tree representation of a ��� has healthy support. Hence, we
believe that an ��-based interface can e�ectively complement visual
���s to augment learning experiences of learners. Speci�cally, a
learner may use the visual ��� to get a quick overview and then
peruse the �� description to acquire detailed understanding.

The majority of natural-language interfaces for ����� [31–33,
45], however, have focused either on translating natural language
sentences to ��� queries or narrating ��� queries in a natural lan-
guage. Scant attention has been paid for generating natural lan-
guage descriptions of ���s. Natural language generation for ���s
is challenging from several fronts. First, although deep learning
techniques, which can learn task-speci�c representation of input
data, are particularly e�ective for natural language processing, it
has a major upfront cost. These techniques need massive training

Figure 3: Survey of ��� formats.

sets of labeled examples to learn from. Such training sets in our
context are prohibitively expensive to create as they demand data-
base experts to translate thousands of ���s of a wide variety of
��� queries. Even labeling using crowdsourcing is challenging as
accurate natural language descriptions demand experts who un-
derstand ���s. Note that accuracy is critical here as low quality
translation may adversely impact individuals’ learning. Second,
ideally we would like to generate natural language descriptions
of ���s using one application-speci�c dataset (e.g., movies) and
then use it for other applications (e.g., hospital). That is, the natural
language generation framework should be generalizable. This will
signi�cantly reduce the cost of its deployment in di�erent learning
institutes and environments where di�erent application-speci�c
examples may be used to teach database systems.

In this paper, we present a novel end-to-end system called �������
(naturaL lANguage descripTion of quERy plaNs) to generate natural-
language descriptions of ���s. Given an ��� query and its ���, it
automatically generates a natural language description of the key
steps undertaken by the underlying ����� to execute the query.
To this end, instead of mapping an entire ��� to its �� description,
we focus on mapping the set of physical operators in a ����� to
corresponding �� descriptions and then stitch them together to
generate the description of a speci�c ���. The rationale behind this
strategy is as follows. Any ����� implements a small number of
physical operators to execute any ��� query. Hence, although there
can be numerous ���s, they are all built from a small set of physical
operators. Consequently, it is more manageable to label these oper-
ators and generate a �� description of any ��� from them. This also
allows us to generalize ������� to handle any application-speci�c
database as the relations, attributes, and predicates can simply be
used as placeholders in describing a physical operator. Lastly, it
makes our framework orthogonal to the complexities of ��� queries
as they are all executed by a small set of physical operators.

We present a �exible declarative framework called ���� for suc-
cinctly specifying�� descriptions of physical operators in an �����.
We then develop a rule-based framework called ����-������� to
generate a natural language description of a ��� by leveraging
the speci�ed descriptions of physical operators. We observe from
our engagements with learners that although rule-based approach
have high accuracy, it makes the descriptions of ���s monotonous
leading to boredom. In fact, this is consistent with psychology
theories that repetition of messages can lead to annoyance and
boredom [19] (detailed in Section 6.1). To address this issue, we
develop a novel deep learning-based language generation frame-
work called ������-������� that infuses language variability in
the generated description by exploiting a group of paraphrasing
tools [8–10] and pretrained word embeddings [22, 36, 42, 43]. Im-
portantly, it addresses the challenge of training data generation by
�rst generating a large number of random queries based on schema
information and actual values in the database and then utilize ����-
������� and the paraphrasing tools to generate a large number

Figure 36: A QEP and its visual tree representation.

The majority of NL interfaces for RDBMS, however, have fo-
cused either on translating NL sentences to SQL queries or
narrating SQL queries in an NL sentence. Scant attention has
been paid for generating NL descriptions of QEPs. Natural lan-
guage generation (NLG) for QEPs is challenging from several
fronts. First, deep neural language generation methods that are
very successful in NLP, rely on massive training sets of labeled
examples. Such training sets in our context are prohibitively
expensive to create as they demand database experts to translate
thousands of QEPs of a wide variety of SQL queries. Second,
ideally we would like to generate NL descriptions of QEPs
using one application-specific dataset (e.g., movies) and then
use it for other applications (e.g., hospital). That is, the NLG
framework should be generalizable.

In [72, 115], we present a novel end-to-end system called LANTERN (naturaL lANguage descripTion of quERy plaNs)
to generate NL descriptions of QEPs. Given an SQL query and its QEP, it automatically generates an NL description of
the key steps undertaken by the underlying RDBMS to execute the query. To this end, instead of mapping an entire QEP
to its NL description, we focus on mapping the set of physical operators in an RDBMS to corresponding NL descriptions
and then stitch them together to generate the description of a specific QEP. Any RDBMS implements a small number of
physical operators to execute any SQL query. Hence, although there can be numerous QEPs, they are all built from
a small set of physical operators. Consequently, it is more manageable to label these operators and generate an NL
description of any QEP from them. This also allows us to generalize LANTERN to handle any application-specific
database as the relations, attributes, and predicates can simply be used as placeholders in describing a physical operator.
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Lastly, it makes our framework orthogonal to the complexities of SQL queries as they are all executed by a small set of
physical operators. We present a flexible declarative framework called POOL for succinctly specifying NL descriptions
of physical operators in an RDBMS. We first develop a rule-based framework called RULE-LANTERN to generate
an NL description of a QEP by leveraging the specified descriptions of physical operators. We observe from our
engagements with learners that although rule-based approaches have high accuracy, it makes the descriptions of QEPs
monotonous, leading to boredom. In fact, this is consistent with psychological theories that repetition of messages can
lead to annoyance and boredom. To address this issue, we develop a novel deep learning-based language generation
framework called NEURAL-LANTERN that infuses language variability in the generated description by exploiting a
group of paraphrasing tools and pretrained language models (e.g., BERT). Importantly, it addresses the challenge of
training data generation by first generating a large number of random queries based on schema information and actual
values in the database and then utilizing RULE-LANTERN and the paraphrasing tools to generate a large number of NL
descriptions of the physical operators. We built LANTERN on top of PostgreSQL and SQL Server. Our exhaustive
experimental study with real learners demonstrates the superiority of LANTERN compared to existing QEP formats of
commercial RDBMS.

5.3.3 Aspect-based Neural Recommender

With the shift towards an increasingly digital lifestyle, recommender systems play a critical role in helping consumers
to find the best product or service amongst a variety of options. Some of the most widely used recommendation systems
rely on the Collaborative Filtering (CF) technique, which utilizes past interaction data such as ratings, purchase logs,
or viewing history, to model user preferences and item features. However, a major limitation of CF techniques is its
inability to provide reliable recommendations to users with few ratings, or recommend items with limited ratings,
i.e., the well-known cold start problem. Recent recommender systems have considered another valuable source of
information which is readily available in many review websites: free-text reviews. More often than not, users provide
an accompanying review to explain why they liked or disliked that particular product or service. For example, a review
may include the user’s opinions on the various aspects of an item, such as its price, performance, quality, etc. By
focusing on these salient factors, we can better infer both the preferences of a specific user (e.g., User X prefers a
restaurant with outdoor seating) and the properties of an item (e.g., Restaurant Y is famous for its seafood dishes).

Figure 37: Overall architecture of the proposed model

Different users may emphasize more on different aspects
throughout their interactions with these items. For ex-
ample, some user may like a particular restaurant for its
food, while another user frequents the same restaurant
due to its cozy ambiance. Similarly, a user may prior-
itize the storyline when choosing a horror movie, but
pays more attention to the cast when evaluating an action
movie. Understandably, the importance of each aspect
largely depends on both the user and item in question,
and being able to capture such dynamic and fine-grained
interactions between users and items would be invaluable
in determining why some user may prefer an item over
the other. In [121], we propose a novel neural recom-
mender system which performs aspect-based representa-
tion learning for users and items by designing an attention
mechanism to focus on the relevant parts of these reviews
while learning the representation of aspects on the task.
Furthermore, we estimate aspect-level user and item im-
portance in a joint manner using the idea of co-attention,
which allows us to model the finer-grained interactions
between users and items (fig. 37). We conduct extensive
experiments on 25 benchmark datasets from Amazon and
Yelp to evaluate our proposed model against several SoTA
baselines. We investigate how the different components
in our proposed model contribute to its effectiveness.

5.3.4 Sentence Representation for Text Mining

In earlier work, we focus on learning distributed representation of sentences for text mining tasks that involve clustering,
classifying, or ranking sentences. Most prior work on learning sentence representations by and large considers only the
content of a sentence and disregards the relations among sentences. In our work [99, 100], we propose a series of novel
models for learning latent representations of sentences (i.e., Sen2Vec) that consider the content of a sentence as well as
inter-sentence relations. We first represent the inter-sentence relations with a language network and then use the network
to induce contextual information into the content-based Sen2Vec models. Two different approaches are introduced
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to exploit the information in the network. Our first approach retrofits (already trained) Sen2Vec vectors with respect
to the network in two different ways: (i) using the adjacency relations of a node, and (ii) using a stochastic sampling
method which is more flexible in sampling neighbors of a node. The second approach uses a regularizer to encode
the information in the network into the existing Sen2Vec model. Experimental results show that our proposed models
outperform existing methods in three fundamental tasks — classification, clustering, and ranking, demonstrating the
effectiveness of our approach.

5.4 Speech Recognition

Our work has explored unsupervised modeling of speech (§5.4.1), online ASR (§5.4.2) and speech transformer (§5.4.3).

5.4.1 Unsupervised Speech Processing

T T N
N

Figure 38: Proposed generative model on the left
and the corresponding inference model on the right.
zt and y are latent random variables, xt is the ob-
served random variable, T is the number of frames
in the acoustic segment, x1:T . Model and posterior
parameters are θ and φ respectively. y and z encodes
information present at different time scales in the
speech signal.

Our interest in unsupervised speech processing stems from the de-
sire to depart from expert based, fully supervised automatic speech
recognition systems to the decipher-based scenario, where unlabeled
speech and non-parallel text are available. In this scenario, a ma-
chine would have to learn to read and listen from scratch without
correspondences between speech and text. Unsupervised represen-
tation learning can be seen as tackling the listening part of the larger
problem. Another motivating factor for our work is unsupervised
spoken language acquisition – the problem of discovering discrete
linguistic structure from speech. The problem of acoustic unit dis-
covery (AUD) falls under this category. The task is to cluster similar
sounding acoustic segments, thereby discovering sound units that
occur frequently in a speech corpus. A lower dimensional structured
latent space can make the problem easier by reducing the number of
parameters needed to build an AUD clustering model.

In [57], we propose a novel generative model, the factorial deep
markov model (FDMM) that learns disentangled and intepretable
representations from speech without supervision. At a high level, the
FDMM is just a variational auto-encoder (VAE) which, in addition to
the usual encoder and decoder neural nets, has a transition neural net that models the Markovian dynamics in the latent
space. The model is trained using Stochastic Variational Inference (SVI), an optimization-based approximate inference
method. We evaluate our model on speaker verification, dialect identification and domain mismatched ASR tasks and
show that it successfully encodes content and style/domain information in two independent latent variables.

5.4.2 Preventing Early Endpointing in Online ASR

With the development of end-to-end neural models for ASR, high attention is given to approaches in deploying these
models for online speech recognition. Despite the recent progress, online ASR is known to have an early endpointing
problem. There are mainly two categories of studies dealing with early endpointing. Voice-activity-detection scans
input audio frames for long silence interval to stop decoding. However, using silence detection for ASR endpointing
may not be ideal since they are essentially two different tasks. Furthermore, silence detection ignores acoustic cues
or speaking rhythm. Another line of research is end-of-query detection. To train the ASR and endpointing jointly, a
special ‘〈/s〉’ token signaling the end of the utterance was incorporated into the label sequence for prediction. However,
it requires performing a forced alignment between the transcript and speech beforehand to obtain the ground truth
endpoint. In [127], we introduce a novel approach to address the early endpointing that neither relies on different
types of silence nor obtains the ground truth endpoint with forced alignment. We leverage our ScaleGrad technique
[66], which was originally proposed to mitigate the text degeneration issue (§3.1). We adapt it to discourage the early
generation of ‘〈/s〉’. A scaling term is added to encourage the model to learn to keep generating non-‘〈/s〉’ tokens by
directly maneuvering the gradient of the training loss. Our method is effective and can be jointly applied with other
techniques discussed above. Experiments show that our model outperforms the baseline by a good margin.

5.4.3 Speech Transformers

Recently, the Transformer model [112] has been successfully introduced for ASR. As an end-to-end model, the
Transformer not only combines the acoustic model, pronunciation dictionary and LM in a unified neural framework, it
is also well known for its fast computation speed and ability to learn long range relationships. The encoder transforms
audio signals into high-level representations, from which the decoder generates the text sequences in an auto-regressive
manner one token at a time. In our work, we propose a series of improvements to the basic speech transformer model.
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tation length. A sinusoidal positional encoding is added to en-
code position information. Transformer encoder then computes
hidden state representation of each position in parallel with a
self-attention network. For the three inputs key, query and
value, which are three distinct transformations of an input se-
quence, the multi-head attention network, which concatenates
self-attention network h times as introduced in [23], is:

Attention(Q, K, V ) = softmax(
QKT

p
dk

)V (1)

MultiHead(Q, K, V ) = Concat(head1, ..., headh)W O

(2)
headi = Attention(QW Q

i , KW K
i , V W V

i ) (3)

where h is the head number, W Q
i 2 Rdmodel⇥dq , W K

i 2
Rdmodel⇥dk , W V

i 2 Rdmodel⇥dv , W O 2 Rhdv⇥dmodel , dk =
dq = dv = dmodel/h in this paper.

Multi-head attention allows learning input representation
from different subspaces concurrently. Layer normalization and
residual connection are applied before and after multi-head at-
tention network. Afterward, there is a position-wise feedfor-
ward network with rectified linear unit (ReLU) activation:

FFN(x) = max(0, xW1 + b1)W2 + b2 (4)

where W1 2 Rdmodel⇥dff , W2 2 Rdff⇥dmodel , and the biases
b1 2 Rdff , b2 2 Rdmodel .

Each layer in encoder consists of multi-head attention net-
work and position-wise feedforward network. For speech trans-
former decoder, there is a third sublayer between multi-head at-
tention and position-wise feedforward network. This is a multi-
head cross attention computed over encoder and decoder out-
put, where key and value vectors come from encoder, and query
vector comes from decoder. To prevent self-attention network
from attending to future positions in the decoder, a masking is
applied.

2.2. Speaker aware persistent memory

Persistent memory was proposed by [24] to replace position-
wise feedforward network in Eq. 4 by an all-attention network,
and to capture general knowledge and non-contextual informa-
tion about the task, but the similar concept was first proposed
in the question answering task [25]. Different from them, our
objective is to do speaker adaptation. We propose to perform
speaker aware training by learning speaker specific knowledge
in a similar manner as capturing general knowledge by the per-
sistent memory model. We call it speaker aware persistent
memory model. In particular, we randomly sample N speaker
i-vectors m1, ..., mN 2 Rdk which form the speaker space.
Persistent memory vectors Mk and Mv are learned transforma-
tion of speaker space:

Mk = Concat([Ukm1, ..., UkmN ]) 2 RN⇥dk (5)

Mv = Concat([Uvm1, ..., UvmN ]) 2 RN⇥dk (6)

where Uk 2 Rdk⇥dk , Uv 2 Rdk⇥dk .
Speaker specific knowledge of an utterance is learned

through the attention with the persistent memory vectors. This
is built on the assumption that the linear combinations of
speaker space are enough to cover the speaker information
space, i. e. a weighted sum of persistent memory vectors can
represent any specific speaker knowledge. The persistent mem-
ory vectors Mk and Mv , together with X = [x1, ..., xt] which

Figure 1: Speaker aware persistent memory model. Mk and
Mv from speaker i-vectors are concatenated to key and value
vectors.

are input vectors of self-attention network, form the new key
and value vectors for self-attention computation as Eq. 9:

Km = [k1, ..., kt+N ] = Concat([Wkx1, ..., Wkxt], Mk)
(7)

Vm = [v1, ..., vt+N ] = Concat([Wvx1, ..., Wvxt], Mv) (8)

Attention(Q, Km, Vm) = softmax(
QKT

mp
dk

)Vm (9)

In the original persistent memory model [24], it randomly
initializes N pairs of vectors as Mk and Mv in Eq. 7 and Eq. 8,
and these vectors are learnable. On the contrary, the N speaker
i-vectors we use are fixed. Only the weight matrices associated
with attention mechanism Uk and Uv are learnable. Further-
more, since our speaker aware persistent memory is not meant
to play the same role as position-wise feedforward network,
we leave the feedforward network same as the original trans-
former model. Given that Mk and Mv are shared across all
layers, they form the persistent memory, and that is why we call
it speaker aware persistent memory model. Figure 1 gives the
overall framework of speaker aware persistent memory model.

There are three main advantages of our proposed model.
First, we use randomly sampled N speaker i-vectors as the
speaker space, and obtain any speaker knowledge from them. It
solves the problem of having unknown speakers in the test data.
It further relieves us from computing all speaker i-vectors of the
training data. Second, attention with persistent memory vec-
tors is computed together with the entire utterance. Therefore,
it takes the entire utterance into consideration while capturing
speaker information, which is different from [11] who obtains
time step dependent speaker information. Last, [11] concate-
nates speaker embedding with encoder final layer output, and
downscales the vector to original at decoder side. It doubles the
parameter size of linear transformation in each decoder layer. In
contrast, attention with persistent memory vectors is integrated
into the self-attention network in our model, and there is no ex-
tra parameters of linear transformation in decoder.
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Figure 39: Speaker aware persistent memory. Mk and Mv

from speaker i-vectors are concatenated to key and value.

(b) Speaker Adaptation. Although ASR performance has
greatly improved with the transformer, speaker mismatch be-
tween training and test data generally degrades the perfor-
mance. Previous studies to address the speaker mismatch prob-
lem can be categorized into feature adaptation and model adap-
tation. Feature adaptation works on acoustic features, either
by normalizing acoustic features to be speaker-independent,
or by bringing auxiliary speaker related knowledge (e.g., i-
vector) into the acoustic model. Model adaptation estimates
the speaker-dependent parameters from speaker-independent
model parameters with additional adaptation data.

In our work [125, 128], we propose we propose a unified
speaker adaptation approach consisting of feature adaptation
and model adaptation. For feature adaptation, we employ a
speaker-aware persistent memory model which generalizes
better to unseen test speakers by making use of speaker i-
vectors to form a persistent memory. We concatenate speaker
i-vectors to speech utterance, and apply this to each encoder
layer, thus forming a persistent memory through the depth of
the encoder (fig. 39). Different from prior work which learns
for each speech time step, our method learns utterance level
speaker knowledge. For model adaptation, we use a novel
gradual pruning method to adapt to target speakers without
changing the model architecture. We gradually prune less contributing parameters on model encoder to a certain sparsity
level, and use the pruned parameters for speaker adaptation, while freezing the unpruned parameters to keep the original
model performance. On the Librispeech dataset, our proposed approach brings 2.74-6.52% word error rate (WER)
reduction (relative) on general speaker adaptation. On target speaker adaptation, our method outperforms the baseline
by up to 20.1% and surpasses the finetuning based baseline by up to relative 8.62%.

Figure 1: Universal Speech Transformer model architecture.

speech transformer. To the best of our knowledge, this is the
first work regarding the dynamic encoder and decoder depth in
ASR. The recurrent nature of universal transformer best suits
the needs of recognizing phonemes with different complexity
and noise level, at the same time dynamically learning the en-
coder and decoder depth, which relieves the burden of tuning
depth related hyperparameters. However, universal transformer
model has two problems when applied on ASR. First, it adds the
depth embedding and positional embedding repeatedly for each
layer, which dilutes the acoustic information carried by hidden
representation. Second, it performs a partial update of hidden
vectors between layers, which is less efficient compared to the
full update given the same number of update. To tackle these
two problems, we remove the depth embedding and only add
the positional embedding once at the transformer encoder fron-
tend, and we replace the partial update of hidden representations
between layers with a full update. On the LibriSpeech, Switch-
board and AISHELL-1 ASR datasets, our proposed universal
speech transformer model outperforms a baseline by 3.88%-
13.7%, and achieves better results with much less computation
cost compared with the very deep transformer model using 36
encoder layers and 12 decoder layers in [13]. From the experi-
mental results, it can be seen that the number of encoder layers
required varies among different input time steps and different
datasets, which further substantiates the value of dynamic depth
over fixed depth for datasets with varying complexity.

2. Model architecture
2.1. Universal speech transformer

Universal speech transformer is based on the popular speech
transformer model, which we refer the reader to [8] for full
details. Same as speech transformer, the core module of uni-
versal speech transformer is the multi-head attention network.
The main change is on the dynamic encoder and decoder depth.
Speech transformer model has fixed encoder and decoder depth.
Compared with RNN and LSTM networks which have iterative
or recursive computation, speech transformer loses the recur-
rent inductive bias. Universal speech transformer addresses this

Figure 2: Example of adaptive computation time technique with
4 input time steps. Maximum number of layers L is 5 here.
Illustration is applicable to both encoder and decoder.

issue with dynamic encoder and decoder depth. The overall
framework of universal speech transformer is presented in Fig-
ure 1. The adaptive computation time technique [16] is applied
to each input time step to calculate the required computation re-
sources, in this case the numbers of encoder and decoder layers,
before emitting the final outputs. Each input speech time step
requires different level of computation resources due to obscu-
rity of different phonemes and noise variation along the utter-
ance. So does each text input. In particular, for the hidden state
Hj = (hj

1, ..., h
j
t) 2 Rt⇥d in jth layer, a probability vector at

ith time step is calculated by a sigmoid function:

pj
i = k�(Whj

i + b) (1)

where W 2 Rd⇥1, b 2 R1, k is a scaling factor, W , b and k are
shared across all layers, i 2 [1, t], j 2 [1, L], L is the maximum
depth defined beforehand.

The halting probability is the summation of the probability
calculated in Eq. 1, which denotes the probability to emit the
final output at ith time step in jth layer:

haltj
i =

jX

k=1

pk
i (2)

The number of encoder or decoder layers required at each
input time step is decided when the halting probability reaches
the threshold, or when the encoder or decoder reaches the max-
imum depth L:

Ni = min(L, max(n0 : haltn0
i  1 � ✏)) (3)

where ✏ is a small constant (0.01 in this paper).
The number of encoder or decoder layers is therefore the

maximum number of layers among all input time steps:

N = max(Ni) i 2 [1, t] (4)

The input at each time step i emits the corresponding output
at N th

i layer. For the input time steps where the outputs are
emitted earlier than the other time steps, i.e. Ni < N , the last
hidden states are carried forward until all the time steps emit the
outputs or when the encoder or decoder reaches the maximum
depth. The hidden state at ith time step in jth layer is thus:

hj
i =

(
hj

i 1  j  Ni

hNi
i Ni < j  N

(5)
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Figure 1: Universal Speech Transformer model architecture.

speech transformer. To the best of our knowledge, this is the
first work regarding the dynamic encoder and decoder depth in
ASR. The recurrent nature of universal transformer best suits
the needs of recognizing phonemes with different complexity
and noise level, at the same time dynamically learning the en-
coder and decoder depth, which relieves the burden of tuning
depth related hyperparameters. However, universal transformer
model has two problems when applied on ASR. First, it adds the
depth embedding and positional embedding repeatedly for each
layer, which dilutes the acoustic information carried by hidden
representation. Second, it performs a partial update of hidden
vectors between layers, which is less efficient compared to the
full update given the same number of update. To tackle these
two problems, we remove the depth embedding and only add
the positional embedding once at the transformer encoder fron-
tend, and we replace the partial update of hidden representations
between layers with a full update. On the LibriSpeech, Switch-
board and AISHELL-1 ASR datasets, our proposed universal
speech transformer model outperforms a baseline by 3.88%-
13.7%, and achieves better results with much less computation
cost compared with the very deep transformer model using 36
encoder layers and 12 decoder layers in [13]. From the experi-
mental results, it can be seen that the number of encoder layers
required varies among different input time steps and different
datasets, which further substantiates the value of dynamic depth
over fixed depth for datasets with varying complexity.

2. Model architecture
2.1. Universal speech transformer

Universal speech transformer is based on the popular speech
transformer model, which we refer the reader to [8] for full
details. Same as speech transformer, the core module of uni-
versal speech transformer is the multi-head attention network.
The main change is on the dynamic encoder and decoder depth.
Speech transformer model has fixed encoder and decoder depth.
Compared with RNN and LSTM networks which have iterative
or recursive computation, speech transformer loses the recur-
rent inductive bias. Universal speech transformer addresses this

Figure 2: Example of adaptive computation time technique with
4 input time steps. Maximum number of layers L is 5 here.
Illustration is applicable to both encoder and decoder.

issue with dynamic encoder and decoder depth. The overall
framework of universal speech transformer is presented in Fig-
ure 1. The adaptive computation time technique [16] is applied
to each input time step to calculate the required computation re-
sources, in this case the numbers of encoder and decoder layers,
before emitting the final outputs. Each input speech time step
requires different level of computation resources due to obscu-
rity of different phonemes and noise variation along the utter-
ance. So does each text input. In particular, for the hidden state
Hj = (hj

1, ..., h
j
t) 2 Rt⇥d in jth layer, a probability vector at

ith time step is calculated by a sigmoid function:

pj
i = k�(Whj

i + b) (1)

where W 2 Rd⇥1, b 2 R1, k is a scaling factor, W , b and k are
shared across all layers, i 2 [1, t], j 2 [1, L], L is the maximum
depth defined beforehand.

The halting probability is the summation of the probability
calculated in Eq. 1, which denotes the probability to emit the
final output at ith time step in jth layer:

haltj
i =

jX

k=1

pk
i (2)

The number of encoder or decoder layers required at each
input time step is decided when the halting probability reaches
the threshold, or when the encoder or decoder reaches the max-
imum depth L:

Ni = min(L, max(n0 : haltn0
i  1 � ✏)) (3)

where ✏ is a small constant (0.01 in this paper).
The number of encoder or decoder layers is therefore the

maximum number of layers among all input time steps:

N = max(Ni) i 2 [1, t] (4)

The input at each time step i emits the corresponding output
at N th

i layer. For the input time steps where the outputs are
emitted earlier than the other time steps, i.e. Ni < N , the last
hidden states are carried forward until all the time steps emit the
outputs or when the encoder or decoder reaches the maximum
depth. The hidden state at ith time step in jth layer is thus:

hj
i =

(
hj

i 1  j  Ni

hNi
i Ni < j  N

(5)
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Figure 40: (Left) Encoder of the Universal Speech Transformer; Decoder has
similar Nd repeated layers (not shown for brevity). (Right) Example of adaptive
computation with 4 input time steps. Maximum number of layers L is 5 here.
Illustration is applicable to both encoder and decoder.

(a) Improved Cross Attention with
Monotonic Alignment. The default
cross-attention module attends to the entire
input utterance and obtains corresponding
attention weights for decoding. However,
when it comes to ASR, the same method
may not work well, as monotonic alignment
between text output and speech input is
a characteristic of ASR, and has been
studied using various techniques. In order
to achieve better alignments between output
and input for ASR, in [124], we propose a
straightforward yet effective cross attention
biasing technique for the Transformer model
that takes output-input alignments into
consideration without adding additional
parameters to encoder hidden states. We
take advantage of cross attention weights as
a reference of output-input alignment to be
used in current cross attention computation.
We apply a Gaussian mask on attention
weights centered at the alignment position.
Additionally, we introduce a regularizer
which regularizes alignment between output
and input to encourage monotonicity.

Since lower layers of the Transformer capture
more acoustic and local information, we apply our cross attention biasing on lower layers of the Transformer model, and
leave the cross attention at higher layers to attend to entire speech input to capture global information. Our results on
LibriSpeech 100h dataset show that our proposed model yields 14.5%-25.0% relative word error rate (WER) reductions.

(b) Universal Speech Transformer. The fixed numbers of encoder and decoder layers in the transformer model limit
its computation capability. On one hand, compared with LSTMs, which have iterative or recursive computation, speech
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transformer loses the recurrent inductive bias, which is helpful to tackle tasks of varying complexity. Each input speech
time step goes through the same and fixed numbers of encoder and decoder layers to compute the final output, regardless
of the fact that different speech time steps differ in phoneme obscurity and noise level, and thus may require different
computational resources. On the other hand, determining the number of encoder and decoder layers requires careful
tuning for each dataset to achieve optimal performance.

In our work [126], we extend the basic idea of universal transformer [13] to the ASR task. It has a transformer-like
architecture and uses a dynamic per-position halting mechanism to choose the required number of layers for each
input time step dynamically, which exactly addresses the issues with the speech transformer analyzed above. To
our knowledge, this is the first work regarding dynamic encoder and decoder depth in ASR. The recurrent nature of
universal transformer best suits the needs of recognizing phonemes with different complexity and noise level, at the
same time dynamically learning the encoder and decoder depth, which relieves the burden of tuning depth-related
hyperparameters. However, the universal transformer model has two problems when applied on ASR. First, it adds the
depth embedding and positional embedding repeatedly for each layer, which dilutes the acoustic information carried by
hidden representations. Second, it performs a partial update of hidden vectors between layers, which is less efficient
compared to the full update given the same number of updates. To tackle these two problems, we remove the depth
embedding and only add the positional embedding once at the transformer encoder front-end, and we replace the
partial update of hidden representations between layers with a full update. On three benchmark datasets, our model
outperforms the baseline by 3.88% -13.7%, and achieves better results with much less computation cost compared to a
very deep transformer model. From the experimental results, it can be seen that the number of encoder layers required
varies among different input time steps and different datasets, which further substantiates the value of dynamic depth
over fixed depth for datasets with varying complexity.

5.5 Deep Learning for Health

5.5.1 activity2vec: Representation Learning for Activity Time-Series

Physical activity and sleep are crucial to health and wellbeing. With the increasing popularity of wearable devices like
Fitbit, which collect detailed data about the body’s movements, there is an increased interest in using actigraphy for
detecting sleep-related disorders and tracking longitudinal changes in the subject’s condition. Although much lower in
fidelity than clinical devices, the availability of wearables provides a novel opportunity, owing to its non-intrusive and
real-time capabilities. However, only a minuscule proportion of the population has both their clinical and wearables
data available. Hence, any approach towards using activity signals should utilize unsupervised learning. In addition,
an important aspect is that information in actigraphy signals depends on the subjects and their environments, such
as their routines and surroundings along with measurement errors owing to device design. In [1], we propose a new
method activity2vec that addresses these challenges. Our method is an unsupervised representation learning model that
learns distributed representations for activity signals spanning over a time segment (e.g., at a day level) in a subject
invariant manner. We use two public datasets to evaluate our approach against baselines on four disorder prediction
tasks (Sleep Apnea, Diabetes, Insomnia, Hypertension). Using a linear classifier (logistic regression), we show that our
proposed representation learning method outperforms the baseline time-series methods, with day-level representations
performing the best. The linear classifier with our learned features performs at par with the convolution neural network
baseline trained end-to-end on the tasks. We also demonstrate the effectiveness of inducing subject invariant features.

5.5.2 Sleep Stage & Quality Prediction

PSG test
CPAP 

Device

Sleep Apnea 

Diagnosed

Monitoring

Automated Sleep Staging 

from Flow Signal

Flow signal

Figure 41: An application use case of our model. A patient
undergoes Polysomnography (PSG) to ascertain the sleep
disorders and is diagnosed with Sleep Apnea. Healthcare
provider recommends CPAP therapy that involves a CPAP
device. Flow signal can be obtained from the device daily
for monitoring purposes. By adding the automated sleep
staging step, we can help healthcare providers with the
means for continuous monitoring of the patient.

Outside of the wake state, sleep can be divided into three stages:
Rapid Eye Movement (REM), Light sleep and Deep sleep.In
[2], we make the first attempt to use CPAP-available flow signal
to identify sleep stages automatically. CPAP users can know
about their sleep health by learning about their sleep states,
while health-care providers can track longitudinal sleep health
and overall success of CPAP therapy (fig. 41).

We propose a new neural network architecture based on chain-
structured CRF that explicitly models the temporal dynamics in
the sleep states, over a CNN to learn high-level abstract features
from CPAP flow signals and an RNN to encode temporal context
in these features. The entire Neural CRF (CNN-RNN-CRF)
network is trained for sleep staging in an end-to-end fashion.
Our Neural CRF method shows a substantial improvement over
the state-of-art when applied to the CPAP flow signal for sleep
staging. Further, we improve the performance using a class
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distribution cost-sensitive prior to deal with the imbalanced distribution of sleep stages and using a domain dependent
regularization over the CRF parameters.

In a separate study [101], we explore deep learning models for sleep quality prediction using actigraphy (wearables)
data. In one setting, we first perform human activity recognition (HAR) on raw sensor data, and then feed HAR output
into both conventional and deep learning models to perform sleep quality prediction. In the other setting, we employ
several deep learning models directly on the raw wearable sensor data without performing HAR or any other feature
extraction. Our results show that using a time-batched LSTM RNN on the raw wearables data improves the sleep
quality prediction by an additional 10% with an overall AUC of 0.97 compared to the state-of-the-art non-deep learning
approaches, which itself shows a 15% improvement over the current clinical practice. Moreover, utilizing deep learning
on raw data eliminates the need for data pre-processing and simplifies the overall workflow to analyze actigraphy data
for sleep and physical activity research. From an application impact perspective, the proposed approach promises a
very high-fidelity screening test for sleep disorders directly from wearables data, potentially replacing the need for an
inconvenient and expensive visit to a sleep laboratory for an evaluation.

5.5.3 NLP for ICU Management

Patients admitted into the intensive care unit (ICU) are monitored by different instruments on their bedside, which
measure different vital signals about patient’s health. During their stay, doctors visit the patient intermittently for
check-ups and make clinical notes about the patient’s health and physiological progress. These notes can be perceived
as summarized expert knowledge about the patient’s state. Predicting the condition of patients during their ICU stay
can help plan better resource usage for patients that need it most in a cost-effective way. Prior studies have focused
exclusively on modeling the problem using the time series signals from medical instruments. Expert knowledge from
doctor’s notes has been ignored in the literature.

Figure 42: Doctor notes compliment physiological signals for better ICU
management.

In [56], we use clinical notes in addition to
the time-series data for improved prediction
on benchmark ICU management tasks (fig. 42).
While the time-series data is measured contin-
uously, the doctor notes are charted at inter-
mittent times. This creates a new challenge to
model continuous time series and discrete time
note events jointly. We propose such a multi-
modal deep neural network that comprises of
recurrent units for the time-series and convolu-
tion network for the clinical notes. We demon-
strate that adding clinical notes improves the
performance on in-hospital mortality prediction, modeling decompensation, and length of stay forecasting tasks.

6 Ongoing & Future Work
In the future, I plan to explore the following research directions.

6.1 A Multilingual, Multitask Model that Learns Continually
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Ongoing/Future Directions

✴A multilingual, multitask NLP model that learns continually.  

Languages/dialects
Tasks

Da
ta

‣ Adapts to new languages/dialects 

‣ Adapts to new tasks 

‣ Prevents catastrophic forgetting [1] 

‣ Prompt engineering is interesting to achieve this goal

[1] Continual Few-shot Relation Learning via Data Augmentation and Embedding Space Regularization. In Sub

✴Robust, Fair and Explainable NLP

‣ Robust training and encoding  

‣ Debiasing methods [3] 

‣ Causality  

[3] GeDi: Generative Discriminator Guided Sequence Generation. In Sub

✴Text Generation

‣ Coherence [2] 

‣ Factual correctness

[2] Should We Rethink the Training Paradigm for Coherence Models? In Sub

Figure 43: Multilingual, Multitask
Continual Learning.

I envision that future NLP models should be flexible enough to adapt to new
languages (and dialects) and new tasks in each of these languages as they arrive,
while preventing catastrophic forgetting (fig. 43). In a recent work [95] (under
review), we propose a continual learning framework for learning new relations
from texts with the help of a dynamic memory and data augmentation. In our
ongoing work, we are exploring the emerging idea of prompt tuning [61] for
continual few-shot learning, where we use a fixed large-scale generative language
model for all tasks and append only a short sequence of task-specific tokens
(a.k.a. prompts) to the input sequence. The parameters of the prompt tokens are
tuned during training on the downstream tasks. We are exploring this idea for
both language understanding and generation tasks.

6.2 Improving Coherence, Factual Correctness and Reasoning in NLG

The SoTA neural text generation models suffer from three main limitations. First,
the generated output lacks coherence as found in our recent study [82]. Second,
the models tend to hallucinate, i.e., they generate facts that are not faithful to the
source and not consistent with the previously generated texts. Finally, they lack
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reasoning capabilities when the task requires logical or numerical reasoning. The latter two limitations are quite crucial
for applications like data2text and summarization. I aim to address these problems of neural text generation models in
two ways. First, by building reliable evaluation measures for these aspects, and then by proposing new methods to
improve on these measures.

6.3 NLP for Programming

The rapid growth of code-related platforms such as Stack Overflow and GitHub has led to huge amounts of rich,
open-source data containing programs associated with natural language. These include code with comments, questions
and answers with code snippets, and communications between software developers. This opens up new opportunities
(and challenges) for researchers to develop effective tools to assist programming.

Various research problems have emerged in this domain including pre-training of large-scale language models, NLP for
code repair and fixing bugs, understanding natural language descriptions in code, code synthesis, automatic generation
of code comments and documentation, etc. In our recent work [118], we propose CodeT5, a unified pre-trained encoder-
decoder Transformer model that better leverages the code semantics conveyed from the developer-assigned identifiers.
Our model is unified in that it builds on a unified framework to seamlessly support both code understanding and
generation tasks, and it employs a unified format of task control codes to allow for multi-task learning. In future, I would
like to focus on developing scalable methods that utilize code structures (e.g., Abstract Syntax Tree), program-level (vs.
function-level) code sequences, and source-code constraints for better understanding and generation of code.

6.4 Robust, Fair and Explainable NLP

Last but not the least, I would like to put significant effort into making the models robust, fair and explainable.
Previously, we have explored robust training and encoding methods [110, 111] and debiasing methods like GeDi [59].
Our ongoing work explores the causality theory and its principles to address these issues.

Remark on Evaluating Computer Science Research

It is a common perception that the number of archival journals authored by a candidate is often considered as a major
factor in promotion and tenure decisions in science and engineering fields. However, in computer science, especially
in the areas of NLP, ML and AI, the preferred means of publication has been one of a number of selective annual
conferences. Not only are these papers carefully peer-reviewed (typically by 3 to 5 referees), but the competition for
acceptance is often overwhelming with extremely low acceptance rates (10-25%); so conference papers are highly
valued in our field. The highly competitive peer-review process ensures a paper’s novelty and quality. In fact, the ACL,
EMNLP and NAACL conferences have much higher h5 Google Scholar citation index (157, 132, 105, respectively)
compared to the journals in NLP (link). Likewise, the conferences ICLR, NeurIPS (formerly, NIPS), ICML, and AAAI
are the top ranked venues in AI with h5-indices of 253, 245, 204 and 157, respectively (link).
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