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Background: Feature Engineering
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Text based features‣ Extract linguistic and other features useful for tasks

‣ Requires language, domain or task expertise

NLP before 2014



Background: Model Engineering
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Move from feature engineering to model engineering (2014 —   ) 

✴ Neural Nets

‣ Design network architectures with better inductive biases

Research Statement – Shafiq Joty

The Internet is a great source of human knowledge, but most of the information is hidden in unstructured texts. As a
researcher in Natural Language Processing (NLP), my goal is to add structure to this text to uncover relevant information,
and to use it in developing useful applications. To this end, my research interests span two areas of NLP: (a) developing
language analysis tools to understand human language, and (b) to build NLP applications to support end users. For (a),
I am interested in parsing texts with syntactic, semantic and discourse structures (§1). For (b), my interests lie in NLP
applications that involve not only language understanding but also generation (§3). These include large-scale language
modeling (LM), machine translation (MT), text summarization, question answering (QA) and dialogue systems. I focus
on multilingual processing, where I develop NLP models for not only English but other low-resource languages and
dialects (§2). As NLP methods are becoming more and more ubiquitous, directly impacting humanity and commerce, I
have also been looking into the security and robustness of NLP models to ensure that they do not exhibit algorithmic
bias and discriminate on the basis of factors such as gender, race, name, location or speaker (§4).1

I am also interested in interdisciplinary research that goes beyond NLP (§5). I have been collaborating with the
(i) computer vision group to develop effective multi-modal (text and image) representation learning models, (ii) speech
group for effective speech recognition solutions, (iii) social computing group for crisis computing and fact checking
solutions, (iv) database and data mining group on solutions for more effective database education and recommendation,
and (v) health science group to develop effective health applications. I have recently embarked on a joint research
project on Covid-19 with Worth Health Organization (WHO) and Lee Kong Chian (LKC) School of Medicine, where
my collaborators and I are investigating machine learning models for effective media monitoring using neural search,
question answering, multi-document summarization and topic modeling. One methodology emphasized throughout my
research is to first identify the inherent semantic structures in a given problem, and then to develop structured machine
learning models to exploit such structures effectively. My work has heavily relied on deep learning (DL) for better
representation of the input text and on probabilistic graphical models (PGM) and reinforcement learning (RL) for
capturing latent dependencies in the output.

1 Language Understanding & Parsing
Natural language is ambiguous. As humans, we can easily disambiguate the meaning of linguistic units (phrases,
sentences) as we read or listen. However, for machines it is difficult to understand without explicit representations of
syntax, semantics and discourse. In my group, we develop NLP tools to parse natural language in terms of its syntax
(constituency, dependency), semantics (e.g., named entities) and discourse structures (e.g., coreference, coherence).

1.1 Syntactic Parsing (Constituency & Dependency)

Constituency and dependency are two different formalisms that represent the grammatical structure of a sentence.
Constituency (a.k.a. phrase-structure) trees organize words and phrases into nested constituents (fig. 1a), whereas words
in a dependency tree are connected directly with each other by directed links called dependencies (fig. 1b).
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Span Representation
S(T ) = {((1, 5), S), ((2, 5), ?), ((2, 4), VP), ((3, 4), S-VP)}

Pointing Representation
P(T ) = {(1 )5,S), (2 )5,?), (3 )4,S-VP), (4 )2,VP), (5 )1,S)}

(a) A binarized constituency tree for a sentence. The span and
pointing representations of the tree are shown below the tree.

(b) A dependency tree for a sentence. Head words are
connected with their modifiers by directed links. Our parser
is trained to point to the dependents given a head.

Figure 1: Constituency and dependency tree structures.

1Source code (and a few demos) of most of the research projects can be found at https://ntunlpsg.github.io/resources/.
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Transformer decoder has become a standard for LLMs

‣ Causal self attention for representation learning


‣ Causal LM as a pre-training objective: P(xt+1 |x1, …, xt)

Background: Model Engineering

Model Architecture for LLMs

Image source: Learning Autocompletion from Real-World Datasets

Output layer

Greedy or Stochastic sampling

Repeat attention block N times

Shared FFN 

Self-attention with causal masking

Linear head projection to query, 
key and value representations

Fetch token embeddings

Image source: Learning Autocompletion from Real-World Datasets



Background: Data Engineering
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To spur innovation on data-centric AI approaches, perhaps 
it’s time to hold the Code fixed and invite researchers to 
improve the Data. 
A huge amount of innovation — in algorithms, ideas, 
principles, and tools — is needed to make data-centric AI 
development efficient and effective. 

Andrew Ng. May 26, 2021

 Source: https://www.deeplearning.ai/the-batch/

‣ Apply effective pre-processing (e.g., tokenisation)

‣ Deal with inconsistencies in data labels

‣ Use effective data augmentation techniques
‣ Identify bias & toxic content

‣ Determine the right mixture of data sources

✴ Examples

Renewed interests esp. with LLMs

https://www.deeplearning.ai


‣ Multi-task models with task prompts

‣ Same backbone model for all tasks

‣ Add “informative” tokens (or task instructions)

Background: Rise of Task Engineering
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Figure 2: Model tuning requires making a task-specific copy of the entire pre-trained model for each downstream
task, and inference must be performed in separate batches. Prompt tuning only requires storing a small task-
specific prompt for each task, and enables mixed-task inference using the original pre-trained model. Using a T5
“XXL” model, each additional copy of the tuned model would require 11 billion parameters. By contrast, our tuned
prompts would only require 81,920 parameters per task—a reduction of over five orders of magnitude—given a
prompt length of 20 tokens and embedding dimension 4,096.

lags far behind that of tuned models. For instance,
GPT-3 175B few-shot performance on SuperGLUE
is 17.5 points below fine-tuned T5-XXL (Raffel
et al., 2020) (71.8 vs. 89.3), despite using 16 times
more parameters.

Several efforts to automate prompt design have
been recently proposed. Shin et al. (2020) propose
a search algorithm over the discrete space of words,
guided by the downstream application training data.
While this technique outperforms manual prompt
design, there is still a gap relative to model tuning.
This may be because the loss as a function of the
prompt tokens is non-differentiable and hard to
optimize reliably in practice.

Li and Liang (2021) propose “prefix tuning” and
show impressive results on generative tasks. This
method freezes the language model parameters and
backpropagates the error during tuning to prefix
activations prepended to each transformer layer in
the encoder stack, including the input layer. Ham-
bardzumyan et al. (2021) simplify this recipe by
restricting the trainable parameters to the input
and output sub-networks of a masked language
model, and show reasonable results on classifica-
tions tasks.

In this paper, we propose prompt tuning as a
further simplification for adapting language models.
We freeze the entire pre-trained model and only al-
low an additional k tunable tokens per downstream
task to be prepended to the input text. This “soft
prompt” is trained end-to-end and can condense
the signal from a full labeled dataset, allowing our
method to outperform “few-shot” prompts, and
close the quality gap with model tuning. At the

same time, because a single pre-trained model is
recycled for all downstream tasks, we retain the
efficient serving benefits of frozen models, as illus-
trated in Figure 2.

While we developed our method concurrently
with Li and Liang (2021) and Hambardzumyan
et al. (2021), we are the first to show that prompt
tuning alone (with no further complexity such as
intermediate-layer prefixes or task-specific output
layers) is sufficient to be competitive with model
tuning. Through detailed experiments in Sections
2–3, we demonstrate that language model capacity
is a key ingredient for these approaches to succeed.
As Figure 1 shows, prompt tuning becomes more

competitive with scale. We offer a comparison with
similar approaches in Section 4.

Explicitly separating task-specific parameters
from “generalist” parameters (those needed for
general language-understanding) has a range of
additional benefits. In Section 5, we show that by
capturing the task definition in the prompt while
keeping the generalist parameters fixed, we are
able to achieve better transfer learning when adapt-
ing to new domains. In Section 6, we show that
“prompt ensembling” (learning multiple prompts
for the same task) can increase quality and is more
efficient than traditional model ensembling.

To summarize, our key contributions are:
1. Proposing prompt tuning and showing its com-

petitiveness with model tuning in the regime
of large language models.

2. Ablating many design choices, and showing
quality and robustness improve with scale.

3. Showing prompt tuning outperforms model

[1] The Power of Scale for Parameter-Efficient Prompt Tuning 

[2] https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html

[3] https://prompts.ai/

https://arxiv.org/pdf/2104.08691.pdf
https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html
https://prompts.ai/


Background: Task Engineering
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‣ What tasks to consider?  

‣ What is the right objective (or reward)?

‣ Accuracy (traditionally)

‣ What about protected attributes (e.g., age, colour, gender, race, religion)?

‣ What about privacy & security issues?

‣ Alignment research

‣ Aligning LLMs to “human” instructions and values

‣ Helpfulness and Harmlessness measures



LLM LifecycleXGPT: Three main steps in developing LLMs (Recap)

1. Pretraining 2. Finetuning 3. Evaluate/Test

● Unsupervised pretraining on large data 
(typically 1T+ tokens)

● Data: Text + Code (typically)
● Large models  show better in-context 

learning capabilities (e.g., GPT 3 is 175B)
● Model architecture: Transformer (Causal LM)

● Align to task instructions/labels 
● Also to make honest and harmless
● Method: supervised finetuning 

○ + RLHF (optional)
● Challenge: getting diverse task instructions 

and input-output instances. 

● Instance held-out
○ Supervised learning setup

● Task held-out
○ Similar tasks can be seen

● Task type held-out
○ Completely unseen tasks

‣ Unsupervised pre-training on 
large data (typically 1T+ tokens)

‣ Data: Text + Code (typically)

‣ Large models show better in-

context learning capabilities 
(e.g., GPT 3 is 175B)

‣ Align to task instructions & labels 

‣ Also make honest and harmless

‣ Method: supervised finetuning 

‣ + RL w/ HF or AIF (optional)

‣ Challenge: getting diverse task 

instructions & input-output instances 

‣ Instance held-out

‣ Supervised learning setup

‣ Task held-out

‣ Similar tasks can be seen


‣ Task type held-out

‣ Completely unseen tasks



Salesforce LLMs and AI Libraries
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The XGen LLM

‣ 7B parameters, 8K sequence length, 1.5T tokens

‣ Fine-tune on public-domain instructional data


‣ Achieves comparable or better results on standard benchmark compared with 
SoTA open-source LLMs (e.g. MPT, LLaMA-1, OpenLLaMA) of similar model size.


‣ Shows benefits on long sequence modeling benchmarks 

‣ Achieves equally strong results both in text and code tasks 

‣ Training cost of $150K for 1T tokens under Google Cloud TPU-v4

Codebase: https://github.com/salesforce/xGen

Model Checkpoint: https://huggingface.co/Salesforce/xgen-7b-8k-base

https://github.com/salesforce/xGen?ref=blog.salesforceairesearch.com
https://huggingface.co/Salesforce/xgen-7b-8k-base?ref=blog.salesforceairesearch.com


The XGen LLM — Pre-training Data

Table 1: Pre-training data. Data mixtures used for pre-training stage 1. For each subset of data we
report the effective number of tokens, number of epochs performed on the subset, and its sampling
proportion.

Dataset Tokens (B) Epochs Sampling prop. (%)
RedPajama-CommonCrawl 879.37 1 63.98
RedPajama-GitHub 62.44 1 4.54
RedPajama-Books 65.18 2.5 4.74
RedPajama-ArXiv 63.32 2 4.61
RedPajama-StackExchange 21.38 1 1.56
C4 from 6 CC dumps (2019 - 2023) 191.50 0.2 13.93
Wikipedia-English 19.52 4 1.42
Wikipedia-21 other languages 62.04 2 4.51
Pile-DM Mathematics 7.68 2 0.56
Apex code from 6 CC dumps 2.09 1 0.15

Total 1374.52 100

Table 2: Pre-training data. Data mixtures used for pre-training stage 2.

Dataset Tokens (B) Sampling prop. (%)
Data from stage 1 55 50
BigCode Starcoderdata 55 50

Total 110 100

LLMs, while our targeted evaluation on long sequence modeling benchmarks show benefits of our
8K-seq models over 2K- and 4K-seq models.

2 Pretraining Data

Our pretraining dataset is a mixture of several public sources, reported in Table 1. We employ a
two-stage training strategy, where each stage uses a different data mixture, as shown in Table 2.

RedPajama. We use five subsets (CommonCrawl, GitHub, Books, ArXiv, StackExchange) from the
recently released RedPajama dataset [8]. Jason: Add a few sentences of motivation why only these
five.

C4. We process six Common Crawl (CC) dumps from year 2019 to 2023, using the C4 pipeline [20],
and deduplicate the documents across different dumps by only keeping the newest timestamp for the
documents with the same URL. Like LLaMA’s preprocessing for CommonCrawl data [25], we train
a linear classifier to categorize the C4 data as a Wikipedia-like document vs. a random document. We
then keep the top 20% Wikipedia-like documents.

Wikipedia. In addition to the 20 languages (bg, ca, cs, da, de, en, es, fr, hr, hu, it, nl, pl, pt,
ro, ru, sl, sr, sv, uk) that were used in LLaMA’s pretraining, we also include Japanese (ja) and
Chinese (zh).

Pile-DM Mathematics. We add the DM Mathematics subset from the Pile dataset [9] to improve
our model’s mathematical ability.

Apex code from CC. Apex is a widely used object-oriented programming language in Salesforce
products. We add documents that contain Apex code from the six Common Crawl dumps to enhance
our model’s proficiency in Apex code generation.

BigCode Starcoderdata. We use all 86 programming languages from Starcoderdata dataset [11],
preserving the original weight of each. Subsequently, we further filter the data according to a stronger
permissive license guideline. [Hiro: Made it "safer", that matches CodeGen2 data description about
category A. In general, we cannot disclose much about license filters about Category A. Some data
that are commercially usable are also removed.]
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‣ Stage 1:

‣ Stage 2:

Table 1: Pre-training data. Data mixtures used for pre-training stage 1. For each subset of data we
report the effective number of tokens, number of epochs performed on the subset, and its sampling
proportion.

Dataset Tokens (B) Epochs Sampling prop. (%)
RedPajama-CommonCrawl 879.37 1 63.98
RedPajama-GitHub 62.44 1 4.54
RedPajama-Books 65.18 2.5 4.74
RedPajama-ArXiv 63.32 2 4.61
RedPajama-StackExchange 21.38 1 1.56
C4 from 6 CC dumps (2019 - 2023) 191.50 0.2 13.93
Wikipedia-English 19.52 4 1.42
Wikipedia-21 other languages 62.04 2 4.51
Pile-DM Mathematics 7.68 2 0.56
Apex code from 6 CC dumps 2.09 1 0.15

Total 1374.52 100

Table 2: Pre-training data. Data mixtures used for pre-training stage 2.

Dataset Tokens (B) Sampling prop. (%)
Data from stage 1 55 50
BigCode Starcoderdata 55 50

Total 110 100

LLMs, while our targeted evaluation on long sequence modeling benchmarks show benefits of our
8K-seq models over 2K- and 4K-seq models.

2 Pretraining Data

Our pretraining dataset is a mixture of several public sources, reported in Table 1. We employ a
two-stage training strategy, where each stage uses a different data mixture, as shown in Table 2.

RedPajama. We use five subsets (CommonCrawl, GitHub, Books, ArXiv, StackExchange) from the
recently released RedPajama dataset [8]. Jason: Add a few sentences of motivation why only these
five.

C4. We process six Common Crawl (CC) dumps from year 2019 to 2023, using the C4 pipeline [20],
and deduplicate the documents across different dumps by only keeping the newest timestamp for the
documents with the same URL. Like LLaMA’s preprocessing for CommonCrawl data [25], we train
a linear classifier to categorize the C4 data as a Wikipedia-like document vs. a random document. We
then keep the top 20% Wikipedia-like documents.

Wikipedia. In addition to the 20 languages (bg, ca, cs, da, de, en, es, fr, hr, hu, it, nl, pl, pt,
ro, ru, sl, sr, sv, uk) that were used in LLaMA’s pretraining, we also include Japanese (ja) and
Chinese (zh).

Pile-DM Mathematics. We add the DM Mathematics subset from the Pile dataset [9] to improve
our model’s mathematical ability.

Apex code from CC. Apex is a widely used object-oriented programming language in Salesforce
products. We add documents that contain Apex code from the six Common Crawl dumps to enhance
our model’s proficiency in Apex code generation.

BigCode Starcoderdata. We use all 86 programming languages from Starcoderdata dataset [11],
preserving the original weight of each. Subsequently, we further filter the data according to a stronger
permissive license guideline. [Hiro: Made it "safer", that matches CodeGen2 data description about
category A. In general, we cannot disclose much about license filters about Category A. Some data
that are commercially usable are also removed.]
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‣ Tokenizer:


‣ OpenAI’s BPE Tiktoken + code related special tokens  



The XGen LLM — Pre-training 

‣ In-house JaxFormer library

• Both data and model parallelism optimized for 

TPU-v4 hardware

‣ Training recipe: mostly follow LLaMA-7B except:


• Token budget increased to 1.5T tokens

• Stage-wise training to increase the sequence 

length from 2K to 4K to 8K

• Vocabulary size increased to 51,200 tokens



The XGen LLM — Base model evaluation

Table 3: Massive Multitask Language Understanding (MMLU). Five-shot accuracy.

Models Humanities STEM Social Sciences Other Weighted average
XGen-7b 33.8 30.7 40.0 41.5 36.3
LLaMA-7b 33.9 30.6 38.2 38.2 35.1
OpenLLaMA-7b 28.1 28.5 31.2 32.8 29.9
Falcon-7b 26.5 25.4 29.2 26.8 26.9
MPT-7b 25.9 26.2 26.9 28.1 26.7
Redpajama-7b 26.1 25.2 27.4 26.7 26.3
Cerebras-GPT-13b 26.1 26.5 25.8 26.6 26.2
Dolly-v2-12b 26.9 25.7 25.3 26.5 26.2
OPT-13b 26.2 24.3 23.4 26.0 25.1
GPT-J-6b 25.9 24.0 24.0 25.8 25.1

complex with GPT4. Finetuning Llama on it demonstrate high performance on instruction following
especially for complex instructions.

Finetuning Details. In instruct finetuning, we use Adam with �1 = 0.9 and �2 = 0.99, cosine decay
for learning rate down to 10% of an initial value 2⇥ 10�5, a batch size of 128, and a sequence length
of 8192 tokens. Each data instance is formatted a single-turn or multi-turn conversation between
Human and Assistant. In particular, it follows the format

### Human: {prompt} ### Assistant: {response}

Our training objective is autoregressive and the loss for prompt is masked out and thus only gradients
on response token are backpropagated. We trained our models for 3 epochs.

5 Evaluation

(Shafiq: Use macros for model names; see macros.tex)

Update: Codebase link. Congying and Rui will together on a high-level structure of the code

5.1 Base Model Evaluation

5.1.1 Standard NLP Benchmarks
• Finally @Shafiq and @Yingbo will check

We first consider the Measuring Massive Multitask Language Understanding benchmark [10], which
is more recent than others due to which it is arguably less susceptible to data contamination as
reported in recent studies (see page 32 of GPT-4 technical report [19] and a related discussion 1), and
has been used consistently as a held-out evaluation benchmark. Recently, however, inconsistencies
in reporting MMLU scores have been reported, which resulted in wrong rankings in Hugginface’s
Open LLM leaderboard; In fact, Huggingface later had to write a blog to clarify this. In our work, we
follow the original MMLU standard, which is consistent with the published results (i.e., in LLaMA).

The massive multitask language understanding benchmark, or MMLU, introduced by [10] consists of
multiple choice questions covering various domains of knowledge, including humanities, STEM and
social sciences. To assess our models’ performance, we conduct evaluations in both the 5-shot and
0-shot settings, utilizing the sample questions from the MMLU benchmark. The results for 5-shot
MMLU are reported in Table 3, and the results for 0-shot MMLU are reported in Table 4. For both
settings, XGen-7b achieves the best results in most categories, also in weighted average.

We also report general zero-shot results on other seven standard NLP benchmarks that involve
common sense reasoning and QA: ARC challenge [7], HellaSwag [30], Winogrande [21], TruthfulQA
[12], BoolQ [6], PIQA [1], OpenBooKQA [14]. The datasets comprise Cloze and Winograd style
tasks, alongside multiple-choice question answering. Our evaluation follows the zero-shot approach

1https://hitz-zentroa.github.io/lm-contamination/blog/?ref=blog.salesforceairesearch.com

5

‣ MMLU



The XGen LLM — Base model evaluation

‣ QA and common sense reasoning

Table 4: Massive Multitask Language Understanding (MMLU). Zero-shot accuracy.

Models Humanities STEM Social Sciences Other Weighted average
XGen-7b 31.4 27.8 32.1 37.2 32.1
LLaMA-7b 32.3 27.1 31.3 36.8 32.0
OpenLLaMA-7b 28.0 27.6 28.9 30.1 28.6
MPT-7b 27.4 25.2 26.0 30.7 27.4
Redpajama-7b 27.5 25.5 24.2 25.0 25.8
GPT-J-6b 25.3 24.5 25.5 27.6 25.7
Dolly-v2-12b 26.2 26.0 24.0 24.9 25.4
Cerebras-GPT-13b 24.3 25.0 23.0 26.0 24.6
OPT-13b 26.3 23.3 23.6 23.6 24.4
Falcon-7b 24.8 21.7 24.0 24.4 23.9

Table 5: Zero-shot performance on Common Sense Reasoning and Question Answering tasks.

Models MMLU
-wavg ARC_ch HellaSwag Winogrande TruthfulQA BoolQ PiQA OpenBookQA

XGen-7b 32.1 41.2 74.2 64.9 39.1 74.3 75.5 40.2
LLaMA-7b 32.0 44.8 76.2 69.6 34 74.9 78.7 44.2
Falcon-7b 23.9 43.4 76.4 67.2 34.3 73.8 79.4 44.0
MPT-7b 27.4 41.7 76.1 68.6 33.4 74.1 79.1 41.8
OpenLLaMA-7b 28.6 38.7 71.8 67.0 35.2 70.6 76.0 39.0
Redpajama-7b 25.8 39.1 70.3 63.8 33.3 69.3 76.9 40.0
GPT-neox-20b 24.5 41.1 70.5 66.1 31.4 64.9 76.7 38.8
OPT-13b 24.4 35.8 69.9 64.7 33.9 65.0 75.7 39.8
GPT-J-6b 25.7 36.3 66.2 64.5 36.0 65.4 75.4 38.2
Dolly-v2-12b 25.4 39.6 70.8 61.8 34.4 56.3 75.4 39.2
Cerebras-GPT-13b 24.6 32.4 59.4 60.8 39.2 61.1 73.5 35.8
StableLM-alpha-7b 24.4 27.0 40.7 51.5 41.7 59.0 65.8 32.4

commonly employed in the language modeling community. As shown in Table 5, XGen-7b also
achievees state-of-the-art performance.

5.1.2 Code Generation

To evaluate XGen’s code generation capability from natural language instructions (docstrings), we
evaluate it on the HumanEval benchmark [3]. We set the sampling temperature to 0.2, p to 0.95 (for
top-p sampling), and num_samples_per_task (n) to 200. We report the standard zero-shot results with
pass@1 metric, see Table 6.

• @Erik and @Hiro will double check.

• Finally @Shafiq and @Yingbo will check

5.2 Instruction Model Evaluation

(Shafiq: Take a look at WizardLM, Alpaca-eval and LongChat)

5.2.1 AlpacaEval

@Congying and @Ye: please coordinate on the models to show in the table. We may put a more
elaborate table in the Appendix. Also, please standarize the names (see the tables above).

5.2.2 MT-Bench

MT-Bench [32] is a novel benchmark for evaluating Large Language Model (LLM) based chat
assistants. It uses LLMs as judges to assess these models on open-ended questions, addressing the
limitations of previous benchmarks. It also demonstrates a high degree of alignment with human
preferences.
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‣ Code (HumanEval)Table 6: HumanEval benchmark results. Update: we may not include inst model here. Update: [Hiro]
We probably don’t need to include OpenLLAMA-7B (v1).

Models pass@1
XGen-7b 14.20
MPT-7b 15.90
OpenLLaMA-7b-v2 14.83 (30% of the pretraining data is Starcoder data)
LLaMA-2-7b 13.55
LLaMA-7b 10.38
Redpajama-7b 5.24
OpenLLaMA-7b 0 (consecutive whitespaces are treated as one, breaking Python syntax)
Falcon-7b 0 (didn’t generate meaningful code)

Table 7: Alpaca Eval Leaderboard. Update: please capitalize the model names accordingly. Also
describe the difference between the two of our models. Are we updating the HF repo model with the
new Wizardlm one?

Model Win Rate vs text-davinci-003
gpt4 95.3
claude 88.4
chatgpt 86.1
Viccuna-7b-V1.3 76.8
wizardlm-13b 75.3
guanaco-65b 71.8
vicuna-13b 70.4
xgpt_8k_wizardlm196k 68.8
wizardlm_7b 65.2
oasst-rlhf-llama-33b 66.5
Viccuna-7b 64.4
Salesforce/xgen-7b-8k-inst 57.3
text-davinci-003 50.0
falcon-40b-instruct 45.7
mpt-7b-chat 45.0
alpaca-farm-ppo-human 41.2
alpaca-7b 26.5
text_davinci_001 15.2

Single answer grading. A judge employing the LLM system is required to allocate a score directly
to a single provided answer. As shown in Table 8, Our model outperforms others of the same size,
and even surpasses larger models, such as the falcon-40b-instruct.

Pairwise comparison. A judge using the LLM system is given a question along with two potential
answers. Their task is to determine which answer is superior, or to declare that both answers are
equally good. As shown in Table 9, Our model outperforms others of the same size, and even
surpasses larger models, such as the falcon-40b-instruct.

5.3 Long Sequence Tasks

• @Woj, @Ye, @Meghana, @Lifu: this will be your section (i.e., you will be responsible to
get this section done).

• @Alex, @Philippe: please check.

• @Tong, @Praful, @Jesse, @Ben and everyone in this group are very much encouraged to
include more and interesting tasks.

• @Senthil and @Ben will check.

• (Shafiq: This is an opportunity to get these “public” benchmarks ready as we will be training
more and bigger models, and with new instructional data.)
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The XGen LLM — Instruction tuned

‣ Instructional data:  WizardLM [1]

‣ Supervised fine-tuning

[1] Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng, Pu Zhao, Jiazhan Feng, Chongyang Tao, and Daxin Jiang. Wizardlm: 
Empowering large language models to follow complex instructions. arXiv preprint arXiv:2304.12244, 2023

Table 3: Massive Multitask Language Understanding (MMLU). Five-shot accuracy.

Models Humanities STEM Social Sciences Other Weighted average
XGen-7b 33.8 30.7 40.0 41.5 36.3
LLaMA-7b 33.9 30.6 38.2 38.2 35.1
OpenLLaMA-7b 28.1 28.5 31.2 32.8 29.9
Falcon-7b 26.5 25.4 29.2 26.8 26.9
MPT-7b 25.9 26.2 26.9 28.1 26.7
Redpajama-7b 26.1 25.2 27.4 26.7 26.3
Cerebras-GPT-13b 26.1 26.5 25.8 26.6 26.2
Dolly-v2-12b 26.9 25.7 25.3 26.5 26.2
OPT-13b 26.2 24.3 23.4 26.0 25.1
GPT-J-6b 25.9 24.0 24.0 25.8 25.1

complex with GPT4. Finetuning Llama on it demonstrate high performance on instruction following
especially for complex instructions.

Finetuning Details. In instruct finetuning, we use Adam with �1 = 0.9 and �2 = 0.99, cosine decay
for learning rate down to 10% of an initial value 2⇥ 10�5, a batch size of 128, and a sequence length
of 8192 tokens. Each data instance is formatted a single-turn or multi-turn conversation between
Human and Assistant. In particular, it follows the format

### Human: {prompt} ### Assistant: {response}

Our training objective is autoregressive and the loss for prompt is masked out and thus only gradients
on response token are backpropagated. We trained our models for 3 epochs.

5 Evaluation

(Shafiq: Use macros for model names; see macros.tex)

Update: Codebase link. Congying and Rui will together on a high-level structure of the code

5.1 Base Model Evaluation

5.1.1 Standard NLP Benchmarks
• Finally @Shafiq and @Yingbo will check

We first consider the Measuring Massive Multitask Language Understanding benchmark [10], which
is more recent than others due to which it is arguably less susceptible to data contamination as
reported in recent studies (see page 32 of GPT-4 technical report [19] and a related discussion 1), and
has been used consistently as a held-out evaluation benchmark. Recently, however, inconsistencies
in reporting MMLU scores have been reported, which resulted in wrong rankings in Hugginface’s
Open LLM leaderboard; In fact, Huggingface later had to write a blog to clarify this. In our work, we
follow the original MMLU standard, which is consistent with the published results (i.e., in LLaMA).

The massive multitask language understanding benchmark, or MMLU, introduced by [10] consists of
multiple choice questions covering various domains of knowledge, including humanities, STEM and
social sciences. To assess our models’ performance, we conduct evaluations in both the 5-shot and
0-shot settings, utilizing the sample questions from the MMLU benchmark. The results for 5-shot
MMLU are reported in Table 3, and the results for 0-shot MMLU are reported in Table 4. For both
settings, XGen-7b achieves the best results in most categories, also in weighted average.

We also report general zero-shot results on other seven standard NLP benchmarks that involve
common sense reasoning and QA: ARC challenge [7], HellaSwag [30], Winogrande [21], TruthfulQA
[12], BoolQ [6], PIQA [1], OpenBooKQA [14]. The datasets comprise Cloze and Winograd style
tasks, alongside multiple-choice question answering. Our evaluation follows the zero-shot approach

1https://hitz-zentroa.github.io/lm-contamination/blog/?ref=blog.salesforceairesearch.com

5

‣ Alpaca eval

Table 6: HumanEval benchmark results. Update: we may not include inst model here. Update: [Hiro]
We probably don’t need to include OpenLLAMA-7B (v1).

Models pass@1
XGen-7b 14.20
MPT-7b 15.90
OpenLLaMA-7b-v2 14.83 (30% of the pretraining data is Starcoder data)
LLaMA-2-7b 13.55
LLaMA-7b 10.38
Redpajama-7b 5.24
OpenLLaMA-7b 0 (consecutive whitespaces are treated as one, breaking Python syntax)
Falcon-7b 0 (didn’t generate meaningful code)

Table 7: Alpaca Eval Leaderboard. Update: please capitalize the model names accordingly. Also
describe the difference between the two of our models. Are we updating the HF repo model with the
new Wizardlm one?

Model Win Rate vs text-davinci-003
GPT-4 95.3
Claude 88.4
Chatgpt 86.1
Wizardlm-13b 75.3
Guanaco-65b 71.8
Vicuna-13b 70.4
XGen-7b-inst 68.8
Wizardlm-7b 65.2
OAsst-rlhf-llama-33b 66.5
Vicuna-7b 64.4
text-davinci-003 50.0
Falcon-40b-instruct 45.7
MPT-7b-chat 45.0
Alpaca-farm-ppo-human 41.2
Alpaca-7b 26.5
text_davinci-001 15.2

5.3 Long Sequence Tasks
• @Woj, @Ye, @Meghana, @Lifu: this will be your section (i.e., you will be responsible to

get this section done).
• @Alex, @Philippe: please check.
• @Tong, @Praful, @Jesse, @Ben and everyone in this group are very much encouraged to

include more and interesting tasks.
• @Senthil and @Ben will check.
• (Shafiq: This is an opportunity to get these “public” benchmarks ready as we will be training

more and bigger models, and with new instructional data.)
• @Semih will check once Woj says it’s ready.
• Finally @Shafiq and @Yingbo will check

5.3.1 Lost in the Middle

We evaluate XGen

Update: @Ye: could you please put the numbers on your 2 task (when it is ready)?

5.3.2 Meghana’s QA task (need a title)

@Meghana will include long-form QA.
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‣ MT bench
Table 8: MT Bench Evaluation.Update: model names are not consistent with alpaca eval. Please fix.

Model Score
GPT-4 8.99
GPT-3.5-turbo 7.94
Claude-v1 7.90
Claude-instant-v1 7.85

Vicuna-33b-v1.3 7.12
Wizardlm-30b 7.01
Guanaco-33b 6.53
Tulu-30b 6.43
Guanaco-65b 6.41
OAsst-sft-7-llama-30b 6.41
Palm-2-chat-bison-001 6.40
MPT-30b-chat 6.39
Vicuna-13b-v1.3 6.39
Wizardlm-13b 6.35
Vicuna-7b-v1.3 6.00
Baize-v2-13b 5.75
XGen-7b-inst 5.69
Nous-hermes-13b 5.51
MPT-7b-chat 5.42
GPT4all-13b-snoozy 5.41
Koala-13b 5.35
Wizardlm-7b 5.29
MPT-30b-instruct 5.22
Falcon-40b-instruct 5.17
H2ogpt-oasst-open-llama-13b 4.63
Alpaca-13b 4.53
Chatglm-6b 4.50
OAsst-sft-4-pythia-12b 4.32
Rwkv-4-raven-14b 3.98
Dolly-v2-12b 3.28
Fastchat-t5-3b 3.04
Stablelm-tuned-alpha-7b 2.75
Llama-13b 2.61

We evaluate XGen-7B and other open source models for in-house created long form evaluation
tasks. We generate questions from ChatGPT on long documents from Wikipedia for the following
domains: Sports, Physics, Engineering, and History in two settings. First, we generate questions with
specific instructions on the Wikipedia document. In order to generate more abstract questions that
would require combining different elements from different parts of the context document, we first
summarize the context document and then generate questions on the summary using ChatGPT. Next,
we prompt XGen and other open-source models to answer the questions generated from ChatGPT on
the two settings mentioned above. We set a maximum of 512 tokens for generation. We use GPT-4 for
evaluating the responses on the generated answers and rate them on a scale of 0-3 for the following
dimensions: coherence, relevance, and accuracy. As shown from the table 10, we find that XGen-7B
outperforms all the other models of similar sizes.

5.3.3 Long Chat

Update: @Bo: could you please put the numbers on your 2 tasks?

Update: Bo will do Coarse-grained Topic Retrieval and Fine-grained Line Retrieval from LongChat

5.3.4 Dialogue summarization

@Lifu will include .
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A. Background   

‣ Role of Model, Data and Tasks in LLMs

B. XGen LLM

‣ Pre-training & instructional tuning    

C. Task engineering with LLMs

‣ Knowledge-enhanced chain-of-thought 

‣ Low-resource translation

‣ Data distillation

Outline
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D. Limitations



‣ Factual Correctness!


‣ Innate shortcoming of generative models?


‣ May contain outdated knowledge


‣ Incorrect recalling of pre-trained knowledge


‣ Make up facts


‣ …

‣ Contain ethical concerns and safety hazards.

One Key Challenge in LLMs



Chain-of-Thought (CoT) in LLMs

Wei et al. Chain-of-Thought Prompting Elicits Reasoning in Large Language Models.

‣ CoT improves LLM’s abilities in reasoning tasks



Chain-of-Thought (CoT) in LLMs

‣ CoT improves LLM’s abilities in reasoning tasks.


‣ However, reasoning chains are only used to derive answers.


‣ Current evaluation is result-oriented: if answer is wrong, regard 
the reasoning chain as “bad”

‣ Can we revise a “bad” reasoning path to be better?


‣ Better reasoning chains should generate more correct answers.



How do we approach complex questions?

Step 1: Are we certain about the answer?


• If yes, answer with internal knowledge.


• If no, go to step 2.


Step 2: Look up relevant information in external resources!


• Answer with retrieved knowledge



Step 1: How can we tell when the model is uncertain?

If we directly ask: LLM will always say it’s confident!


Self-consistency [2]  is a good approximation


• Sample multiple reasoning paths for answering Q.


• If all paths lead to the same answer, self-consistency is high.

Verify and Edit CoT [1]

[2] Wang et al. Self-consistency improves chain of thought reasoning in language models. In ICLR-2023

[1] Zhou et al. Verify-and-Edit: A Knowledge-Enhanced Chain-of-Thought Framework In ACL-2023



Step 2: Look up relevant information

‣ Retrieval


1. Verify a reasoning step by producing a question:


“Sky is yellow” -> “What is the color of sky?”


2. Retrieve with the query


“The sky appears blue to the human eye”

Verify and Edit CoT

‣ Synthesis


3. Edit the reasoning step by incorporating retrieved information

[1] Zhou et al. Verify-and-Edit: A Knowledge-Enhanced Chain-of-Thought Framework In ACL-2023



Verify and Edit CoT

[1] Zhou et al. Verify-and-Edit: A Knowledge-Enhanced Chain-of-Thought Framework In ACL-2023

Verify-and-Edit: A Knowledge-Enhanced Chain-of-Thought Framework
Ruochen Zhao 1⇤ Xingxuan Li 1,2⇤† Shafiq Joty 1,3‡ Chengwei Qin 1 Lidong Bing 2

1 Nanyang Technological University, Singapore
2 DAMO Academy, Alibaba Group

3 Salesforce AI
{ruochen002, chengwei003}@e.ntu.edu.sg

{xingxuan.li, l.bing}@alibaba-inc.com
srjoty@ntu.edu.sg

Abstract

As large language models (LLMs) have
become the norm in NLP, demonstrating good
performance in generation and reasoning
tasks, one of its most fatal disadvantages
is the lack of factual correctness. Generat-
ing unfactual texts not only leads to lower
performances but also degrades the trust
and validity of their applications. Chain-
of-Thought (CoT) prompting improves
trust and model performance on complex
reasoning tasks by generating interpretable
reasoning chains, but still suffers from
factuality concerns in knowledge-intensive
tasks. In this paper, we propose the Verify-
and-Edit framework for CoT prompting,
which seeks to increase prediction factuality
by post-editing reasoning chains according
to external knowledge. Building on top
of GPT-3, our framework lead to accuracy
improvements in multiple open-domain
question-answering tasks. For reproducing
our results and extending the framework
further, we make our codebase available at
https://github.com/RuochenZhao/Verify-and-
Edit

1 Introduction

Large Language Models (LLMs) have become the
new norm in many downstream NLP tasks. In
utilizing these LLMs, Chain-of-Thought (CoT)
prompting (Wei et al., 2022) is found to improve
performances for tasks that require complex reason-
ing, such as math word problems, commonsense
reasoning, and symbolic manipulation. At the same
time, it is able to generate interpretable reasoning
chains. Recent work further explored how to use
these reasoning chains to select better predictions.
However, the primary focus of these methods has

⇤Equal contribution.
†Xingxuan Li is under the Joint Ph.D. Program between

Alibaba and Nanyang Technological University.
‡Work done when the author was on leave from NTU.

StandardQuestion

Chain-of-thought

Self-Consistency: 
less than majority agree

Verify

External Knowledge Retrieval

Edit Rationales New Prediction

Of all the teams
John Nyskohus
played for, which
team was known
as "the Black and
Whites?"

Newcastle United.

First, John Nyskohus played for the Norwegian
football team Odd Grenland. Second, Odd
Grenland is known as "the Black and
Whites." The answer is Odd Grenland.

What team did John Nyskohus play for? 
What team is known as "the Black and Whites?" 

John Nyskohus ... is an Australian former soccer player who played club football for
USC Lion ... and Adelaide City in the National Soccer League ... 
Adelaide City Football Club is an Australian football (soccer) club based in Adelaide,
South Australia. They are also known as "The Zebras" and "the Black and Whites. 

First, John Nyskohus played for Adelaide City in
the National Soccer League. Second, Adelaide
City Football Club is known as "the Black and
Whites". 

The answer is
Adelaide City Football
Club.

Figure 1: The Verify-and-Edit framework consists of
five steps: (1) pass predictions with lower-than-average
consistency to the next stages while leaving highly con-
sistent predictions as-is; (2) produce verifying ques-
tions; (3) retrieve external knowledge; (4) edit ratio-
nales with informed answers; and (5) produce new pre-
dictions.

been to improve end-task performance by utiliz-
ing generated CoTs as-is. For example, Ye and
Durrett (2022) train a calibrator that tunes predic-
tion probabilities based on rationale scores; Wang
et al. (2022) sample multiple reasoning paths to find
the most common (consistent) prediction. Only a
few, such as Creswell et al. (2022) and Zhou et al.
(2022), have explored ways to improve the quality
of CoTs themselves.

In fact, improving the CoT quality could be ben-
eficial in enhancing both interpretability and end-
task performance. Ye and Durrett (2022) point out
that explanations judged as good by humans of-
ten indicate more accurate predictions. Intuitively,
a better set of CoT prompts could provide better
grounding and logically consistent thought pro-

ar
X

iv
:2

30
5.

03
26

8v
1 

 [c
s.C

L]
  5

 M
ay

 2
02

3



Results

with in-context learning. The verifying answers are
produced using the same number of examples in
original answer generation and greedy decoding.

To study the effect of knowledge retrieval sys-
tems on the results, we use four systems:

1. Wikipedia-API (wiki): Searching for the query
entities and selecting top sentences from their
Wikipedia pages.

2. DrQA (Chen et al., 2017): A pre-trained open-
domain QA model that combines bigram hash-
ing, TF-IDF matching, and a multi-layer recur-
rent neural network model. We only utilize the
contexts retrieved from it.5

3. Google: Using top-k search results produced by
Google as assistive contexts. This result is in-
teresting in providing possibilities in combining
search engines and LLMs.

4. Dataset: Selecting from the set of paragraphs
provided in Adversarial HotpotQA and 2Wiki-
MultihopQA, which includes ground-truth sup-
porting contexts and distractor paragraphs. This
is similar to an oracle setup, which provides an
upper bound of the performance boost, assum-
ing we have a good retrieval system.

For 1, 2, and 4, after retrieving, we select the top
3 sentences most similar to the query ranked by the
pre-trained Sentence BERT model (Reimers and
Gurevych, 2019) as context.

5 Results and Analysis

5.1 Using Self-Consistency: know when it
doesn’t know

For the first step in the Verify-and-Edit framework,
consistency is used to measure the model’s confi-
dence in a prediction. Aligned with the findings
from Wang et al. (2022), we hypothesize that when
the consistency is low, the model is more uncertain
and thus more likely to generate inaccurate predic-
tions. To test whether this hypothesis holds, we plot
the kernal density estimation plots for consistency
distribution on the Adversarial HotpotQA dataset.
As shown in Fig. 2, the incorrect samples show a
left-skewed consistency distribution, where most
incorrect predictions have low consistencies. On
the other hand, the distribution of correct predic-
tions shows a right-skewed tendency, where there

5We selected DrQA by first conducting small-scale ex-
periments with different open-domain QA models, including
DPR (Karpukhin et al., 2020). DrQA is found to yield better
performance. Thus, we consistently use it.

Figure 2: Kernal density estimation plots for consis-
tency on the Adversarial HotpotQA dataset. With ker-
nal estimation, the curve extends its true distribution’s
range, which is from 0 to 5 (as we sampled 5 paths).

Method knowledge EM �EM AUC
CoT-SC ! ReAct Wiki. 34.2% +0.8% -
ReAct ! CoT-SC Wiki. 35.1% +1.7% -
Standard - 23.1% - 43.24
CoT - 31.8% - 38.30
CoT-SC - 31.2% - 34.97
CoT-SC + Calib. Dataset - - 49.00
CoT-SC + VE Wiki. 35.7% +4.5% 45.62
CoT-SC + VE DRQA 36.0% +4.8% 46.06
CoT-SC + VE Google 37.7% +6.5% 47.98
CoT-SC + VE Dataset 56.8% +25.6% 60.94

Table 1: Results on the Adversarial HotpotQA dataset.
The best result for each model is underlined and the
best result overall is bolded. �EM represents the im-
provement on Exact Match from the CoT-SC baseline.
The top two rows uses the PaLM model and the rest
uses the GPT-3 davinci-003 model.

are very few incorrect samples with higher consis-
tencies. This effectively validates our hypothesis.

In the main experiments, we use dn/2e as a ma-
jority threshold and edit all samples below it, which
is at 3. To show the effects of different thresholds
on the framework’s performance, we also provide
an ablation study later.

5.2 Results on HotpotQA

Reported in Table 1, we observe that CoT improves
on top of the Standard few-shot setting. CoT-SC,
on the other hand, does not demonstrate a good
improvement on the baseline. Using the calibra-
tor from Ye and Durrett (2022), AUC is improved
as it learns to calibrate the answer weights based
on ground-truth contexts provided in the dataset.

HotpotQA:

# Examples Cohen  CoT-SC Ours Tie
50 0.25 17% 53% 30%

Table 4: Human study for factuality of CoTs on the
HotpotQA dataset. “Ours” refers to the Verify-and-Edit
model with Google retrieval.

Compared to our method, ReAct is able to
demonstrate a larger improvement on Fever. First
of all, it has been mentioned before that Fever is
less suited for the Verify-and-Edit framework as it
requires less reasoning to solve the task. Secondly,
ReAct prompts are much longer than our prompts,
requiring more computational costs.

5.5 Cost considerations
As cost reduction is a main concern when inter-
acting with LLMs, our method takes it into con-
sideration and attempts to reduce computational
costs from two aspects: Firstly, Verify-and-Edit
only makes edits for selected instances, whereas
others edit every time. Specifically, we only revise
when the model is uncertain (judged by consis-
tency), which occurs 40% of the time. As a com-
parison, other methods, such as ReAct, retrieve
relevant information and edit for every single in-
stance, resulting in higher costs. Secondly, Verify-
and-Edit designs tasks that are natural and conver-
sational, requiring only a few demonstrations and
short prompts to learn. For example, other methods
usually learn non-natural calls, such as [thought]
and [action] tags in ReAct and API calls in Tool-
former (Schick et al., 2023). Therefore, the LLM
requires longer prompts, more demonstrations, or
even fine-tuning to learn the format. On the other
hand, we design Verify-and-Edit tasks to be as nat-
ural as possible, requiring minimal effort to learn.
Our tasks only consist of asking and answering
questions, with no synthetic tags or tasks to be
learned. As a comparison, with the GPT-3 API, for
editing one Fever instance, Verify-and-Edit costs
$0.014, whereas ReAct costs $0.017.

5.6 Evaluating the reasoning chains with
human study

To closely examine the faithfulness of the gener-
ated reasoning chains, we also conduct a small-
scale human study experiment. During the exper-
iment, two human volunteers are shown 50 ran-
domly selected questions with generated reasoning
chains from CoT-SC and Verify-and-Edit on the
HotpotQA dataset. They are then asked to select

Figure 3: Ablation study on the effect of various consis-
tency thresholds on task performances on Adversarial
HotpotQA

the more factually consistent one. Volunteers are
encouraged to use search engines as assistance. A
detailed description on the setup is described in
Appendix D.

Shown in Table 4, humans select the reasoning
chains produced by Verify-and-Edit as more factu-
ally consistent 53% of the time, compared to 17%
for the CoT-SC baseline. The Cohen  is at 0.25,
showing fair agreement between the two annota-
tors (McHugh, 2012). The annotators used Google
search as an assistive tool 100% of the time, which
shows the necessity of introducing external knowl-
edge.

Moreover, human annotations in this case re-
quire a lot of efforts. Annotators report 1.5 minutes
on average to validate one data point. Thus, au-
tomating the Verify-and-Edit process is of benefits
as an assistive tool to reduce human labor.

To observe the qualitative effects of the Verify-
and-Edit framework in detail, we also include sev-
eral interesting examples in Appendix E, which
show the effectiveness of our framework in correct-
ing the original claims.

5.7 Ablation study: editing at different
consistency thresholds

In the Verify-and-Edit framework, the only hyper-
parameter to select is the consistency threshold.
Similar thresholds also exists in ReAct (Yao et al.,
2022), where the CoT ! ReAct method is to em-
ploy ReAct-style prompting when “the majority
answer among n CoT-SC samples occurs less than
n/2 times". Using majority counts, however, is less
fine-grained compared to using the original con-
sistency formulated with log probablities. Thus,
we employ the original score proposed by Wang
et al. (2022), which is the unnormalized answer
probabilities marginalized over the rationales’ log

Human evaluation on factuality:



Supporting heterogeneous knowledge sources

Knowledge sources


• Unstructured (NL sentences)


• Structured (Wikidata, Tables)


How to query different sources effectively?


• Need a robust query generator



Step 1: How can we tell which knowledge source to use?

Reasoning preparation


1. Break down the question into reasoning steps (CoT)


2. Select the most relevant knowledge source (domain) 


• e.g., the question requires medical knowledge

Knowledge Adapting framework [3]

[3] Li et al. Chain of Knowledge: a framework for grounding large language models with structured knowledge bases.



Step 2: How to retrieve the most relevant knowledge?

Knowledge Adapting


Methodology:


• Train an Adaptive Query Generator (AQG): instruction-tune 
LLaMA-7B with LoRA for each language 


• e.g., Natural sentence, SPARQL, SQL


• AQG generates a query for each reasoning step


• Execute it on the knowledge source

Knowledge Adapting framework [3]

[3] Li et al. Chain of Knowledge: a framework for grounding large language models with structured knowledge bases.



Knowledge Adapting framework [1]

[3] Li et al. Chain of Knowledge: a framework for grounding large language models with structured knowledge bases.



Knowledge Adapting framework [1]

[3] Li et al. Chain of Knowledge: a framework for grounding large language models with structured knowledge bases.



Results

Results on factual & medical domains:



What about other (esp. low-resource) languages?

‣ LLMs are usually trained on dominant English disproportionally


‣ Impressive performance in only high-resource languages (e.g, en, fr)


‣ Poor performance on low-resource languages (e.g, Nepali)


‣ Data coverage < 0.0001% or None at all


‣ Don’t have lots of instruction data either



Linguistically Diverse Prompting (LDP) [1]

‣Theoretical Basis and Assumptions

‣ In-context exemplars help LLMs to infer a pre-trained task [2]


‣ Task example: Translate from English to Nepali or Igbo 


‣ LLMs can understand a language easily (NLU), but may struggle 
to generate/translate a low-resource language (NLG)


‣ LLMs have “near-perfect” expressibility in English

[2] Xie et al. An Explanation of In-context Learning as Implicit Bayesian Inference
[1] Nguyen et al. LLMs for Low-resource Languages with Linguistically Diverse Prompting

https://arxiv.org/abs/2111.02080


‣ Few-shot prompts from diverse high-resource languages


‣ Prompt to translate low-resource input —> English


‣ Use exemplars from “every” language to invoke the task of 
understanding “any” language and expressing in English


‣ NLU standpoint: LLMs can “express” any input using 
English with ease provided sufficient task prior

Language “Understanding” with LDP



‣ Doing the opposite (En—>X) fails!


‣ Don’t know the language tag (e.g, Igbo)


‣ Inconsistent target-side distribution


‣ Poor generation ability in target language

Low-resource Language Generation



LDP for MT

‣ X—>En: linguistically diverse prompts 
from high-resource languages


‣ En—>X: Use the X—>En above to create 
synthetic intra-lingual prompts from 
unlabeled data in X language


‣ X—>Y: Combine both X—>En and En—>Y 
to create synthetic [X;En;Y] triplet as 
prompts


‣ Unsupervised finetuning: Use X—>En to 
generate synthetic dataset to finetune 
LLMs for translation

Colored-box: in-context prompts


Red non-colored-box: model generated



LDP-results: Unsupervised Low-resource MT

‣ Unsupervised LDP is as good as supervised prompting across Indic & African languages


‣ LoRA finetuning a 7B model achieves close performance with 175B model in En—>X



LDP-results: Unsupervised X—>Y non-English MT

‣ Unsupervised LDP on par with supervised prompting in high-resource pairs


‣ But outperforms supervised prompting in pairs involving low-resource languages


‣ Also surpasses cross-lingual instruction (XLT) - another English-pivoting method



A. Background   

‣ Role of Model, Data and Tasks in LLMs

B. XGen LLM

‣ Pre-training & instructional tuning    

C. Task engineering with LLMs

‣ Knowledge-enhanced chain-of-thought 

‣ Low-resource translation

‣ Data distillation

Outline
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D. Limitations



Data Distillation from Closed LLMs 

‣ Closed LLM (teacher) generate —> open-source LLM (student) learn 


‣ Question: Can we personalise learning for a student model?


‣ Our solution [1]:


‣ Train on tasks that student fails to solve (personalised input)


‣ Teacher follows student’s answer and provide adaptive 
refinement to make it correct (personalised output)

[1] Chen et al. Personalised Distillation: Empowering Open-Sourced LLMs with Adaptive Learning for Code Generation



Standard vs Personalised Distillation from LLMs

‣ Left: force student to learn teacher’s prior (standard distillation)


‣ Right: Teacher follows student’s prior and improve upon it 
(personalised distillation)

[1] Chen et al. Personalised Distillation: Empowering Open-Sourced LLMs with Adaptive Learning for Code Generation



Standard vs Personalised Distillation from LLMs

[1] Chen et al. Personalised Distillation: Empowering Open-Sourced LLMs with Adaptive Learning for Code Generation

‣ Provides incremental 
improvements on student’s 
answer


‣ While Standard distillation’s 
answer is vastly different 
from student’s prior



Personalised Distillation Results 

‣ Outperforms input-personalised 
(InpD) and standard distillation 
(StanD) consistently on each 
setting —> more effective 
learning


‣ Outperforms StanD despite 
using only 1/3 of its data —> 
more efficient learning

[1] Chen et al. Personalised Distillation: Empowering Open-Sourced LLMs with Adaptive Learning for Code Generation



Limitations 

[1] Faith and Fate: Limits of Transformers on Compositionality 

[2] Lost in the Middle: How Language Models Use Long Contexts

‣ Task decomposition & planning


‣ Effective use of context

 for A(x)
x = [7,49]

 function multiply (x[1..p], y[1..q]):
   // multiply x for each y[i]
   for i = q to 1
     carry = 0
     for j = p to 1 
       t = x[j] * y[i]
       t += carry
       carry = t // 10
       digits[j] = t mod 10
     summands[i] = digits

   // add partial results (computation not shown)
   product = 
   return product

�q
i=1summands[q+1-i] � 10i-1

A(x) multiply 
1-digit carry concatmod 10 sumColor  
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Figure 1: Transformation of an algorithm A to its computational graph GA(x). The depicted example is of
long-form multiplication algorithm A, for inputs x = [7, 49] (i.e. computing 7⇥ 49).

static computation graph GA(x). GA(x) = (V, E, s, op) is a directed acyclic graph. Nodes V
represent all variables’ values during A’s execution: each node v 2 V has a value s(v) 2 R
associated. Edges E represent the function arguments involved in some computation: for each non-
source node v 2 V , let U = {u1, . . . , uj} ⇢ V j be its parent nodes. Then, s(v) = f(u1, . . . , uj)
for some f 2 FA. Since each node v is uniquely defined by the computation of a single primitive f ,
we define op : V ! FA as op(v) = f .

Let S ⇢ V be the source nodes of GA(x) and without loss of generality, let o 2 V be its sole leaf
node. By definition, S ⌘ x and A(x) = s(o), representing the input and output of A respectively.

To be able to train and evaluate a language model’s ability to follow algorithmAwe must linearizeGA(x).
Since we only consider autoregressive models, this linearization must also be a topological ordering.

2.2 Quantifying Compositional Complexity using Graph Metrics

A’s representation as a computation graphGA(x) enables measuring task complexity from many angles.

We define a node v 2 V ’s layer number as the length of the longest path from a source node to v in
the directed acyclic graph GA(c). We then define the reasoning depth as the largest layer number in
the graph. In computation graphs, reasoning depth is a proxy for the maximum level of multi-hop
reasoning required to solve the task.

Let dS : V ! N0 be the shortest distance to any of G’s source nodes S ⇢ V . We define the
reasoning width of a graph as the mode of {d(v) : v 2 V }. This metric aims to measure the
maximum number of variables required to maintain in parallel during the computation. Relatedly, we
also define the average parallelism of a graph as the ratio between |V | and its reasoning depth. This
aims to compute the average width in computation through the graph, and not just in its mode.

2.3 Predicting Surface Patterns through Relative Information Gain

When evaluating model performance, we may observe partially correct answers even in an overall
incorrect response. To understand model strategies in these partial successes, we use Relative
Information Gain to predict surface patterns that models are likely to recognize. We represent task T as
a distribution (X1, . . . , Xn, Y1, . . . , Ym) and measure the amount of (normalized) information gained
about an output element Yj by observing a subset of input random variables X ⇢ {X1, . . . , Xn}:

RelativeIG(Yj , X) =
H(Yj) � H(Yj |X)

H(Yj)
2 [0, 1] (1)

RelativeIG may be used to analyze the influence of any node in the computation graph (as defined in
§2.1) with respect to a set of its ancestors; in particular, output nodes with respect to input nodes.

2.4 Exploring Three Representative Compositional Tasks: Definitions

Multiplication Multi-digit multiplication requires executing operations with numerical symbols
based on procedural rules [29]. This task has multiple algorithmic solutions; in constructing computa-
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(a) Results on question-answer pairs. (b) Results on question-scratchpad pairs.

Figure 4: GPT3 finetuning and prompting accuracy on different data splits. Although the in-distribution
performance is almost perfect, GPT3 exhibits poor generalization with increasing graph depth and width. Refer
to §B.3 and §B.4 for results on the puzzle and DP tasks.

two digits) of each input number. This pattern holds true due to the principles of modulo arithmetic,
which ensures the validity of this relationship in all cases. Empirically, we verify that models indeed
learn the patterns we predicted and other patterns as well (e.g., order of magnitude of the answer,
number of trailing zeros for multiplication) in all the settings with and without scratchpad. See details
for multiplication, plus dynamic programming task analysis in §C.

These experiments suggest that if an output element heavily relies on a single or a small set of input
features, Transformers are likely to recognize such correlation during training and directly map these
input features to predict the output element in testing, without going through the rigorous multi-hop
reasoning and giving a false illusion of performing compositional reasoning.

3.2.2 Transformers Reduce Multi-Step Compositional Reasoning into Linearized Subgraph

Matching

We now explore whether models’ correct predictions on unseen test data are due to learning the un-
derlying algorithm or, instead, explainable by exposure to similar training examples. We hypothesize
that, beyond simple memorization, Transformers largely rely on pattern matching for solving these
tasks. To test this, we calculate the average frequency with which partial computations needed to
solve an instance appear in the training data, for both correctly and wrongly predicted examples.

Given a model-generated computation graph bGA(x) we analyze how often the full computation of
each node v 2 bV is seen in training. We define v’s full computation as the subgraph induced by all
ancestors of v including v, denoted FC bGA(x)

(v). We say that FC bGA(x)
(v) is seen during training if

FC bGA(x)
(v) ⌘ FCGA(x0)(w) for some computation graph GA(x0) in training, and for some w 2 V .

We characterize complexity of a full computation subgraph by its depth, as defined in §2.1.

Figure 5 shows that full computation subgraphs appear significantly more frequently in the training
data for correctly predicted test examples than for incorrectly predicted ones, for both the multi-
plication and DP task (both frequencies tend to zero for large depths since we ensured a disjoint
train/test split). This high correlation suggests that pattern matching—and not general reasoning
capabilities—may be the cause behind correct model outputs. This type of learning could be largely
effective when the compositional complexity of tasks is low but it becomes less efficient when tasks
are increasingly complex. This may elucidate the observed performance gain in low-complexity and
in-domain cases and the striking performance drop in OOD and highly complex cases.

3.2.3 What Types of Errors do Transformers Make at Different Reasoning Depths?

For clearer understanding of where Transformers fall short, we analyze the types of errors that
transformers make for nodes at different layers in the computation graph. For every input x, we
compare the ground truth computation graph GA(x) with the (possibly incorrect) model-generated
computation graph bGA(x). We consider a node v as having a correct value if and only if s(v) = bs(v).4.
We consider a node v to be derived from a correct computation if given that U = {u1, . . . , uk} are
the immediate predecessors of v in bGA(x) and that bop(v) = f , we have that f(u1, . . . , uk) = bs(v).

4If a node v does not appear in the ground truth graph G, we consider it to have an incorrect value.
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Questions? 

Thanks!  


